1	Multiplex, single-cell CRISPRa screening
2	for cell type specific regulatory elements
3	
4 5 6	Florence M. Chardon ^{1,†} , Troy A. McDiarmid ^{1,†} , Nicholas F. Page ^{2,3,4} , Beth Martin ¹ , Silvia Domcke ¹ , Samuel G. Regalado ¹ , Jean-Benoît Lalanne ¹ , Diego Calderon ¹ , Lea M. Starita ^{1,5} , Stephan J. Sanders ^{2,4,6} , Nadav Ahituv ^{3,4,*} , and Jay Shendure ^{1,5,7,8,*}
7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24	 Affiliations: Department of Genome Sciences, University of Washington, Seattle, WA, USA Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA Institute of Pure Precision Medicine, Seattle, WA, USA Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK Howard Hughes Medical Institute, Seattle, WA, USA Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA These authors contributed equally to this work * Correspondence to N.A. (Nadav.Ahituv@ucsf.edu) or J.S. (shendure@uw.edu)
25	Abstract
26 27 28 29 30 31	CRISPR-based gene activation (CRISPRa) is a promising therapeutic approach for gene therapy, upregulating gene expression by targeting promoters or enhancers in a tissue/cell-type specific manner. Here, we describe an experimental framework that combines highly multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to identify cell-type-specific, CRISPRa-responsive <i>cis</i> -regulatory elements and the gene(s) they regulate. Random combinations of many gRNAs are introduced to each of many cells, which are then profiled and partitioned into test and control groups to test for effect(s) of CRISPRa perturbations of both enhancers and promoters on the expression of neighboring genes.

Applying this method to candidate *cis*-regulatory elements in both K562 cells and iPSC-derived excitatory neurons, we identify gRNAs capable of specifically and potently upregulating target genes, including autism spectrum disorder (ASD) and neurodevelopmental disorder (NDD) risk genes. A consistent pattern is that the responsiveness of individual enhancers to CRISPRa is restricted by cell type, implying a dependency on either chromatin landscape and/or additional trans acting factors for successful gone, activation. The approach sufficient here may facilitate large cells

36 *trans*-acting factors for successful gene activation. The approach outlined here may facilitate large-scale screens for 37 gRNAs that activate therapeutically relevant genes in a cell type-specific manner.

38 Introduction

There are millions of candidate *cis*-regulatory elements (cCREs) in the human genome, yet only a handful have been functionally validated and confidently linked to their target gene(s)¹. Recently, we and others have combined CRISPRinterference (CRISPRi) and sc-RNA-seq to scalably validate distal cCREs, while also linking them to the gene(s) that they regulate^{1–4}. However, to date, the vast majority of work in the field has focused on screening candidate regulatory elements for *necessity*, with only a few studies screening for *sufficiency* in the endogenous context.

44 CRISPR-activation (CRISPRa) is a versatile approach that allows one to test for the sufficiency of cCRE activity⁵⁻⁸. 45 CRISPRa screens of noncoding regulatory elements have at least four potential advantages over CRISPRi screens. First, 46 as noted above, CRISPRa can identify cCREs that are sufficient even if not singularly necessary to drive target gene 47 expression. Second, CRISPRa can identify elements that, when targeted, may upregulate already active genes above 48 their baseline levels. Third, CRISPRa has the potential to discover inactive regions that, when transcriptional activation 49 machinery is recruited to them, can act as active enhancers and increase expression of nearby genes⁹. Finally, CRISPRa 50 has the potential to identify cCRE-targeting gRNAs whose activity is cell type-specific, opening the door to "cis regulatory 51 therapy" (CRT) for haploinsufficient and other low-dosage associated disorders, as recently demonstrated for monogenic 52 forms of obesity and autism spectrum disorder^{10,11}. However, despite these potential advantages, CRISPRa targeting of 53 noncoding regulatory elements has mostly been deployed in an ad hoc manner^{9,12-14}, and typically in workhorse cancer 54 cell lines rather than more therapeutically relevant in vitro models.

55 Here, we present a scalable framework in which we introduce multiple, random combinations of CRISPRa 56 perturbations to each of many cells followed by sc-RNA-seq (Fig. 1), analogous to an approach that we previously 57 developed for CRISPRi screening². Computational partitioning of cells into test and control groups based on detected 58 gRNAs enables greater power than single-plex CRISPRa screens, as any given single-cell transcriptome is informative 59 with respect to multiple perturbations². In this proof-of-concept study, we performed two screens in which the same set 60 of cCREs was targeted, first in K562 cells and then in human iPSC-derived excitatory neurons. We discover both 61 enhancer and promoter-targeting gRNAs capable of mediating upregulation of target gene(s). For enhancers in particular, 62 the upregulatory potential of individual gRNAs was consistently restricted to one cell type, implying a dependency on 63 either the cis chromatin landscape and/or additional trans-acting factors for successful gene activation.

64

65 Results

66 Multiplex single-cell CRISPRa screening of regulatory elements in K562 cells

67 As a proof of principle, we first sought to implement multiplex single-cell CRISPRa screening in the chronic myelogenous leukemia cell line K562, an ENCODE Tier 1 cell line¹⁵ in which we had previously performed a multiplex 68 69 CRISPRi screen². Our proof-of-concept library included gRNAs targeting transcription start site (TSS) positive controls 70 (30 gRNAs), candidate promoters (313 gRNAs), candidate enhancers (100 gRNAs) and non-targeting controls (NTCs; 71 50 gRNAs). The 30 TSS positive control gRNAs were selected from a previously reported hCRISPRa-v2 library¹⁶, while 72 the 313 candidate promoter-targeting gRNAs were designed to 50 annotated TSSs of 9 high-confidence haploinsufficient 73 risk genes associated with ASD and NDD (BCL11A, TCF4, ANK2, CHD8, TBR1, SCN2A, SYNGAP1, FOXP1, and 74 SHANK3) that are potential therapeutic targets for CRT¹⁷. The candidate enhancer-targeting guides included 50 gRNAs 75 designed to target 25 enhancer hits previously validated by CRISPRi², as well as 50 gRNAs designed to target 25 76 enhancer "non-hits" (i.e. sequences with biochemical markers strongly predictive of enhancer activity in K562 cells that 77 did not alter gene expression when targeted with CRISPRi²) (Fig. S1A-B; Methods). We cloned this gRNA library (n=493) 78 into piggyFlex, a piggyBac transposon-based gRNA expression vector, to allow for genomic integration and stable 79 expression of gRNAs¹⁸. The piggyFlex vector has both antibiotic (puromycin) and fluorophore (GFP) markers, enabling 80 flexibly stringent selection for cells with higher numbers of gRNA integrants. Additionally, this vector design allows for 81 gRNA transcript capture during single-cell library preparation¹⁸ (Fig. S1C).

There is no consensus on which CRISPRa activation complex is best suited for broad and scalable targeting of enhancers¹³. We therefore tested both the VP64 activation complex, which consists of four copies of the VP16 effector, and the VPR activation complex, which consists of the VP64 effector fused to the p65 and Rta effectors^{19,20}. The VPR complex has been shown to lead to higher levels of transcriptional activation than that of the VP64 complex. However, this increased upregulation could achieve higher than therapeutically needed expression levels and being much larger
than VP64 could impinge on packaging and delivery of gene therapy vectors such as adeno associated virus (AAV)²⁰.
We generated a monoclonal, stably VP64-expressing K562 cell line, purchased a polyclonal, stably VPR-expressing
K562 cell line (Fig. 2A; Methods), and validated the capacity of these lines for CRISPRa with a minimal cytomegalovirus
(CMV) promoter-tdTomato reporter expression assay²¹ (Fig. S2).

We then transfected the gRNA library and piggyBac transposase into each cell line at a 20:1 library-to-transposase ratio to achieve high multiplicity of integration (MOI), and selected cells with puromycin. Cells were cultured for nine days before harvesting for sc-RNA-seq to capture and assign gRNAs to single cell transcriptomes (Fig. 2A; Fig. S1). After QC filtering, we recovered 33,944 high-quality single-cell transcriptomes across the two cell lines, with 79% of cells having one or more detected gRNAs. We recovered a mean of 2.5 gRNAs per cell (Fig. 2B) and 178 cells per gRNA (Fig. 2C). Transcriptome quality, MOI, gRNA assignment rate, and gRNA coverage were similar across all four sc-RNA-seq batches (10x Genomics lanes) as well as the two cell lines tested (Fig. S3).

98 To systematically assess the effect of each CRISPR perturbation on target gene expression, we adapted an iterative 99 differential expression testing strategy in which all single cell transcriptomes are computationally partitioned into cells 100 with or without a given gRNA². These two groups are then tested for differential expression of all genes within 1 megabase 101 (Mb) (upper estimate of topologically associated domain size in mammalian genomes²²) upstream and downstream of 102 the gRNA target site (Fig. 1; Fig. 2A; Methods). In both VP64- and VPR-mediated CRISPRa screening experiments, we 103 observed robust upregulation from both promoter and enhancer-targeting gRNAs (276/391 log₂FC>0, 70.6%, p<2.2x10⁻ 104 ¹⁶, Fisher's Exact Test; **Fig. 2D-E**). The presence of an excess of highly significant *P*-values for cells harboring targeting 105 gRNAs versus non-targeting controls (NTCs) also indicates that this multiplex framework successfully detects 106 upregulation of genes from CRISPRa perturbations (Fig. 2D). Effects were consistently much stronger and more 107 significant in the dCas9-VP64 cell line as compared to the dCas9-VPR line (Fig. S3). This may be due to differences 108 between the VP64 and VPR effectors, site-of-integration effects (VP64 line is monoclonal while VPR line is polyclonal). 109 MOI differences of the integrated effectors, power differences (more cells were recovered per perturbation for the VP64 110 line than the VPR line), or a combination of these factors.

111 To identify significant associations between cCRE-targeting gRNAs and their target genes, which we term "hit 112 gRNAs", we set an empirical false discovery rate (FDR) threshold based on the P-values from the NTC gRNA differential 113 expression tests, which are subject to the same sources of noise and error as the targeting gRNA tests. Using an empirical 114 FDR cutoff of 0.1 (Methods), we identified 60 activating gRNA hits, including 8 TSS-targeting positive control gRNAs, 40 115 candidate promoter-targeting gRNAs, 9 distal enhancer hit gRNAs, 2 distal enhancer hit gRNAs wherein the target gene 116 of CRISPRa vs. CRISPRi differed, and 1 distal enhancer non-hit gRNA (in the last three contexts, hit vs. non-hit refers to 117 whether they were "hits" in the previous CRIPSRi-based screen with the same guides and cell line²) (Fig. 2E; Fig. S4). 118 Successfully activating gRNAs were strongly enriched for targeting regions proximal to the genes that they upregulated 119 (Fig. 2F) and were specific to their predicted target (45/48 promoter-targeting gRNA hits and 9/12 successful enhancer-120 targeting gRNAs exclusively upregulated the predicted target and no other gene within 1 Mb; Fig. S4; Table S2). The 121 gRNAs that upregulated a gene other than the predicted target are discussed further below. Of note, we also observed 122 no instances where targeting a regulatory element, whether a promoter or enhancer, caused significant upregulation of 123 >1 gene.

Taken together, these results demonstrate the potential of this framework to efficiently identify promoter- or enhancertargeting gRNAs that drive potent, specific upregulation of their target genes in a cell type of interest. Of note, the promoters that were successfully targeted with CRISPRa included genes that were already well-expressed (*e.g., CCND2*, *GNB1*), including two that are haploinsufficient neurodevelopmental disease genes (*FOXP1, CHD8*) (**Fig. 2G-H; Fig. S4**; **Table S2-S4**). For *CHD8*, in which variants leading to haploinsufficiency are important risk factors for ASD and NDD^{23,24}, we identified multiple CRISPRa-potent gRNAs targeting distinct isoform-specific promoters, providing an inroad to isoform-specific CRT (**Fig. 2H; Fig. S2-S4**).

131 Our strongest hits were at the promoters of genes with very low or undetectable expression in K562 (*e.g., ANK2*, 132 *BCL11A*; **Fig. 2G**; **Table S2-S4**). For example, we identified multiple CRISPRa-potent gRNAs targeting *ANK2*, an 133 ASD/NDD risk gene with a complex isoform structure^{23,24} that is very lowly expressed in K562 cells (**Fig. 2I**). Interestingly, 134 the strongest hits for *ANK2* all targeted a TSS that is not prioritized by biochemical marks (*i.e.*, it is relatively inaccessible 135 and displays a low degree of H3K27ac in K562 cells compared to candidate TSSs of other genes in our library; **Fig. 2I**). On the other hand, for many targeted TSSs or promoters, only one gRNA, if any, potently activated their target gene when coupled to CRISPRa. More specifically, out of the 313 candidate promoter-targeting gRNAs designed to 50 annotated TSSs of 9 genes, only 38 gRNAs, targeting 10 TSSs and 5 genes, successfully mediated upregulation. An additional 2 gRNAs upregulated different genes (*RPS18* and *WWC3*) than their intended targets (*SYNGAP1* and *FOXP1*). These results underscore the value of inclusive, empirical screens to identify both CRISPRa-competent promoters as well as gRNAs that can successfully activate them.

142 At the outset of this work, it was unclear if targeting CRISPRa perturbations to enhancers alone (without co-targeting 143 putatively associated promoters) could reliably increase target gene expression to an extent detectable with conventional 144 sc-RNA-seq^{9,12,13}. To determine if CRISPRa targeted to a single enhancer alone could effectively upregulate target gene 145 expression, we analyzed our 50 targeted candidate enhancers, 25 of which were previously validated by multiplex 146 CRISPRi in K562 cells². We observed target gene upregulation for 8 of these 50 targeted candidate enhancers (as noted 147 above, mediated by 12 gRNAs; Fig. 2G; Fig. S4). Six of the 8 enhancers come from the set of 25 enhancer-gene pairs 148 that we also identified with CRISPRi², including several cases where distinct gRNAs targeting the same enhancer are 149 both successful, e.g. two CRISPRa-competent enhancers of ANXA1 (Fig. 2G; Fig. S4). In addition, we identified: (1) an 150 enhancer-targeting gRNA that was not a hit in the CRISPRi screen, but here led to upregulation of HMGA1; and (2) two 151 enhancer-targeting gRNAs that mediate downregulation of TUBA1A when coupled to CRISPRi, but upregulation of ASIC1 152 when coupled to CRISPRa. Taken together, these results show that multiplex CRISPRa screens leveraging sc-RNA-seq 153 can identify enhancer-targeting gRNAs that can mediate potent upregulation of specific genes without co-targeting of the 154 corresponding promoters (Fig. 2G; Fig. S4; Table S2-S4). Furthermore, differences in activity and target-choice despite 155 using the same gRNAs hint at potential differences between CRISPRi and CRISPRa that warrant further exploration.

156

157 <u>Multiplex single-cell CRISPRa screening of regulatory elements in post-mitotic iPSC-derived neurons</u>

We next sought to extend this framework beyond K562 cells to a model that is more relevant for native biology as well as CRT, post-mitotic human induced pluripotent stem cell (iPSC)-derived neurons (**Fig. 3A**)²⁵. For this, we used a WTC11 iPSC line equipped with a doxycycline-inducible *NGN2* transgene expressed from the *AAVS1* safe-harbor locus to drive neural differentiation, as well as a ecDHFR-dCas9-VPH construct, expressed from the *CLYBL* safe-harbor locus, to drive CRISPRa (**Fig. S5A-B**)⁶. In this line, addition of doxycycline to induce *NGN2* expression and trimethoprim (TMP) to inhibit the ecDHFR degrons drives neural differentiation and initiates CRISPRa⁶. Expression of NGN2 in iPSCs commits these cells to a neuronal fate, and post-mitotic neurons with neuronal morphology develop within days²⁶.

165 After optimizing iPSC transfection conditions to achieve high numbers of integrated gRNAs per cell via nucleofection. we integrated the same gRNA library (at a 5:1 gRNA-library:transposase ratio) into iPSCs as we did for the K562 screen 166 167 (Fig. 3A). Following integration, we confirmed functional CRISPRa activity in these neurons via the same tdTomato 168 expression assay used in our K562 CRISPRa validation (Fig. S5B). In addition to optimizing transfection conditions, we 169 sought to further boost the multiplicity of gRNA integrations per cell by selecting the cells with a high concentration of 170 puromycin (Fig. 3A). After differentiating to neurons over 19 days, we proceeded to sc-RNA-seg. Half of the neurons 171 went directly into sc-RNA-seq (10x Genomics), while the other half were dissociated and flow sorted based on GFP 172 expression (top 40%) prior to sc-RNA-seq, again with the goal of boosting the multiplicity of gRNA integrations (Fig. 3A). 173 After quality control filtering, we retained 51,183 single-cell transcriptomes, of which we recovered 1+ associated gRNAs 174 for 89%. With our optimized transfection protocol, we identified a mean of 6.14 gRNAs/cell (Fig. 3B) and a mean of 638 175 cells that harbored each individual gRNA (Fig. 3C). Sorting on GFP expression prior to sc-RNA-seg resulted in a 2-fold 176 increase in the number of gRNAs identified per cell (Fig. S6).

Our differentiated neurons most closely resemble 14- to 35-day differentiated neurons obtained via *NGN2* induction in iPSCs by an independent group²⁷ (inferred by integration of these sc-RNA-seq datasets; **Fig. 3D**; **Fig. S7**). A minority of the neurons transcriptionally resemble an intermediate neuronal fate, a difference that we tentatively attribute to the absence of co-cultured glia in our differentiation protocol. Although glia are known to promote maturation of NGN2induced neurons (and were used in generating the dataset we are comparing to²⁷), we excluded them because they can also introduce culture variability due to batch effects introduced by primary glia²⁶.

183 We confirmed that the neurons had progressed beyond a pluripotent state and were committed to a post-mitotic 184 neuronal fate by the expression of the pan-neuronal marker *MAP2* and the lack of expression of the pluripotency marker NANOG (Fig. S7). These neurons also express *LHX9* and *GPM6A* -- markers of central nervous system (CNS) neurons
 (Fig. S7C); and *CUX1* and *SLC17A7*, but not GABAergic markers *GAD1* and *GAD2*, supporting their assignment as
 excitatory rather than inhibitory neurons (Fig. S7F)²⁵. Consistent with this, when we co-embedded our transcriptome data
 onto data from Lin et al.²⁷, they overlay with "Fate 2" and "Fate 3" cells, which transcriptionally resemble CNS neurons
 (Fig. 3D; Methods). Of note, there was no readily apparent enrichment of specific gRNAs within particular clusters (Fig. S8), which is consistent with the specificity of the observed instances of upregulation (Fig. S8).

We applied the same differential expression testing strategy as used for the K562 screen to the iPSC-derived neuron screen data, with an empirical FDR cutoff of 0.1 to call significant hits. Similarly to the K562 screen, we observed robust upregulation from targeting gRNAs (281/383 log₂FC>0, 73.4%, p<2.2x10⁻¹⁶, Fisher's Exact Test) and an excess of highly significant *P*-values for targeting gRNA tests compared to NTCs (**Fig. 3E**), confirming that this overall framework is transferable to more physiologically and clinically relevant models such as iPSC-derived neurons. As with the K562 screen, we observed strong enrichment for genomic proximity between successful gRNAs and their target genes, but no such enrichment for NTCs tested for associations with target genes randomly selected from the same set (**Fig. S9**).

198 There were 17 hit gRNAs in neurons (FDR < 0.1; Fig. 3G), all of which were TSS-targeting positive controls (n = 6) 199 or candidate promoters of ASD/NDD risk genes (n = 11) (Fig. S10). Of these 17 hit gRNAs, 12 were also hits in the K562 200 screen while 5 were specific to iPSC-derived neurons (Fig. S11A). The screen in iPSC-derived neurons was strikingly 201 target-specific: 16 of 17 of our identified hits, all promoter-targeting gRNAs, upregulated their anticipated target gene and 202 no other genes within the 1-Mb window tested (Table S5-S7). The only gRNA hit in iPSC-derived neurons resulting in 203 upregulation of an unintended gene was a gRNA targeting the TSS of the pseudogene PPP5D1 that led to upregulation 204 of the calmodulin gene CALM3 (Fig. S10D), but this is presumably due to these two genes sharing a bidirectional, 205 outward-oriented core promoter. This gRNA also drove upregulation of CALM3 in the CRISPRa screen of K562 cells 206 (Fig. S4D). We observed no significant differences across several characteristics (e.g., GC content, baseline target gene 207 expression level, the number of cells harboring each gRNA) between gRNAs vielding successful activation and those not 208 in K562 cells and neurons, with the exception that K562 enhancer hit gRNAs tended to have more cells (Fig. S12).

209 Similar to K562 cells, we observed several instances where a specific TSS was most amenable to activation (Fig. 210 **S13**). One such example is *TCF4*, an ASD/NDD risk gene^{23,24}that is a strong candidate for CRT due to its large cDNA 211 size (precluding it from fitting into an AAV) and complex locus architecture. We tested 14 candidate TSSs of TCF4 and 212 identified 5 gRNAs capable of driving upregulation of TCF4 in neurons, all of which target the same candidate TSS that 213 resides in open chromatin with strong H3K27ac signal (Fig. 3H-I; Fig. S13A). Our hits also included examples of cell 214 type-specific promoters. Among these were several gRNAs targeting candidate promoters of ASD/NDD risk genes 215 capable of upregulating genes that are not expressed or rarely expressed in iPSC-derived NGN2-differentiated neurons 216 (Fig. 3H). For example, gRNAs targeting the promoter of TBR1, a transcription factor expressed in forebrain cortical 217 neurons but known not to be expressed in NGN2-differentiated iPSC-derived neurons²⁵ led to TBR1 upregulation (Fig. 218 3J; Fig. S13B). Of note, these same gRNAs did not result in upregulation of TBR1 in K562 cells. This suggests that these 219 neurons are in a permissive state for CRISPRa to activate TBR1, despite a lack of highly accessible chromatin in the 220 region targeted by the TBR1 gRNA (Fig. 3H, J; Fig. S13B). Whether these differences in "TBR1 activatability" are due 221 to differences in the chromatin environment at this locus between K562 cells and iPSC-derived neurons, or alternatively 222 differences in the milieu of *trans*-acting factors, remains an open question.

223 However, in contrast to the cell type-specific promoter examples noted above, we more often observed consistent 224 upregulation across promoter targets and TSS-targeting controls between the two cell types (Fig. S11). Specifically, 12 225 out of 17 of the promoter- and TSS-targeting hit gRNAs in neurons were also hits in K562 cells, and upregulation was 226 correlated across cellular contexts (Pearson's correlation coefficient = 0.75, Fig. S11). In contrast, we observed striking 227 cell type-specificity for targeted enhancers that were successfully upregulated. While 20% (12/60) of our K562 screening 228 hits were enhancer-targeting gRNAs (Fig. S4), none of these were also hits in neurons (Fig. S10; Fig. S14). Even putting 229 aside significance, the fold-effects on the anticipated target genes of K562-competent activating gRNAs were not well-230 correlated between cell types (Fig. 3F; Fig. S11B, Pearson's correlation coefficient = -0.18). Overall, these results show 231 that it is possible to drive cell type-specific upregulation of a gene of interest by targeting CRISPRa to a cell type-specific 232 distal enhancer, without co-targeting of the corresponding promoter.

233

234 Discussion

235 Here, we describe a scalable framework for identifying cell-type-specific regulatory elements which when targeted 236 with CRISPRa can drive the upregulation of specific target genes. In applying this framework, we identified gRNAs 237 functionally and cell type-specifically targeting promoters of haploinsufficient genes in K562 cells and iPSC-derived 238 excitatory neurons. We identified a novel candidate enhancer-gene pair that is CRISPRa- but not CRISPRi-sensitive, as 239 well as an instance in which a single enhancer, targeted by the same gRNAs, modulated different genes when coupled 240 to CRISPRa vs. CRISPRi. Our approach holds potential to massively scale the screening for gRNAs and cell-type-specific 241 CREs capable of upregulating remaining functional copies of the roughly 660 genes known to cause disease or disorders 242 when haploinsufficient.

243 Several of our strongest gRNA hits were not prioritized by typical predictors of enhancer function, such as chromatin 244 accessibility or H3K27ac histone modifications. For example, we are able to upregulate TBR1 in iPSC-derived neurons 245 by targeting a promoter region that is largely within closed chromatin in this cellular context. Indeed, while measures of 246 proximity, accessibility, and enhancer-related biochemical marks are all strong predictors, none are conclusive or 247 deterministic predictors of regulatory sequence function, either alone or in combination. This underscores the importance 248 of empirical, systematic screens for CRISPRa-responsive regulatory sequences with approaches such as the one 249 described here. Ultimately, a variety of factors including chromatin accessibility and epigenetic modifications, gRNA 250 design quality, and target-specific nuances around CRISPRa-responsiveness, may play a role in determining the success 251 of a CRISPRa perturbation in a given cellular context. Future scaling of this technology and its application to additional, 252 clinically relevant cell types, will provide rich training sets that may enable derivation of rational CRISPRa gRNA design rules for distal. cell-type-specific gene activation, which, in contrast to promoters and CRISPRi^{16,28,29}, are quite lacking 253 254 at present. Further, these results illustrate the unique potential of noncoding CRISPRa screens to identify regulatory 255 elements that can mediate upregulation of target genes, regardless of whether or not the gene is natively expressed in 256 the cell type of interest or not.

257 A major question that we sought to answer through these experiments was whether one can target candidate 258 enhancer sequences with a CRISPRa perturbation and observe upregulation of an intended target gene via scRNA-seq. 259 There have been relatively few efforts to apply CRISPRa to enhancers to date, and most have focused on a handful of 260 enhancer regions and measuring expression of only nearby genes of interest as a readout^{9,12,13}. Recent literature 261 suggests that co-targeting a promoter and the candidate enhancer in question can make the enhancer CRISPRa 262 perturbations more efficient and reliable¹³. Although feasible, co-targeting an enhancer and promoter is less likely to yield cell-type-specific upregulation of target genes -- a likely requirement for effective CRT. Delivery of multiple gRNAs also 263 264 complicates therapeutic delivery and increases the chances of effects on off-target genes (not to mention off-target cell 265 types). Despite using gRNAs that were optimized for CRISPRi screening in our CRISPRa screen, we observed target 266 gene upregulation for 8 of 25 enhancers that we targeted (32%), showing that one can reliably increase target gene 267 expression by targeting enhancers alone. We imagine that this success rate can be improved via a combination of brute 268 force, *i.e.* testing more gRNAs, and better CRISPRa-specific gRNA design.

269 Multiplex, single-cell CRISPRa screening is a scalable approach to identifying functional CRISPRa gRNAs that can 270 upregulate intended target genes in either a general or cell-type-specific manner. We introduced multiple perturbations 271 per cell, which increased the power of our assay (i.e. a mean of 1 gRNA per cell would have required sc-RNA-seq of 272 >400,000 cells to achieve the same power). Given the ease of generating large numbers of differentiated neurons with 273 in vitro human neural cultures, sorting on the GFP-positive gRNA expression vector prior to single-cell transcriptome 274 profiling offers a straightforward way to further boost the number of gRNAs captured per cell. In addition, improvements 275 in methods to capture specific transcripts (in this case, gRNAs) with more cost-effective and scalable transcriptional profiling methods such as sci-RNA-seq^{30,31} may enable considerably larger screens for a given cost. 276

277 CRT is a promising, next-generation therapeutic approach that harnesses endogenous gene regulatory circuits to 278 treat genetic disorders^{10,11,17}. However, CRT requires an intricate knowledge of the regulatory elements capable of driving 279 target gene upregulation at physiologically relevant levels specifically in affected tissues. We envision that the framework 280 described here can be deployed in increasingly sophisticated *in vitro* and *in vivo* models of human development to 281 discover reagents capable of treating the hundreds of disorders associated with low gene dosage.

282

283 Main text figures

284

285 Figure 1 | Multiplex, single cell CRISPRa screening for cell type-specific regulatory elements. (Left) A library of 286 gRNAs targeting candidate cis-regulatory elements (cCREs) is introduced in a multiplex fashion to a population of cells 287 expressing CRISPRa machinery, such that each cell contains a random combination of multiple CRISPRa-mediated 288 perturbations. (Middle) Following single cell transcriptional profiling and gRNA assignment, cells are systematically 289 computationally partitioned into those with or without a given gRNA and tested for upregulation of neighboring genes. 290 (Right) CRISPRa perturbations can either result in target-specific upregulation, no detectable effect (e.g., for non-291 targeting controls) or, at least theoretically, broad cis-upregulation of multiple genes in the vicinity of the gRNA/CRISPRa 292 machinery. Furthermore, patterns of upregulation can either be general or cell type-specific.

293

294 Figure 2 | Multiplex single cell CRISPRa screening of regulatory elements in K562 cells. a) A piggyFlex library 295 containing gRNAs targeting candidate promoters and distal CREs, TSS positive controls, and 10% NTCs was introduced 296 via nucleofection to two K562 cell lines expressing integrated CRISPRa machinery: 1) K562 CRISPRa-VP64 and 2) K562 297 CRISPRa-VPR. Following selection, 20,000 cells per CRISPRa K562 line (40,000 total) were harvested and profiled 298 using sc-RNA-seq to capture and assign gRNAs to single cell transcriptomes (see Fig. S1 and methods for details on 299 piggyFlex design and gRNA capture). b) Following QC and gRNA assignment, we identified an average of 2.54 300 gRNAs/cell (median 1.0 gRNAs/cell). c) Multiplexing more than one perturbation per cell enabled an average of 178.2 301 cells/gRNA (median 140.0 cells/gRNA). d) Quantile-quantile plot showing the distribution of expected vs. observed P-302 values for targeting (blue) and non-targeting (gray, downsampled) differential expression tests. e) (Top) Heatmap 303 showing the average log2 fold change in expression between cells with each targeting gRNA vs. controls for each of the 304 primary/programmed target genes. Tests are sorted left-to-right by increasing log2 fold change. (Bottom) Categorical 305 heatmap showing which of the perturbations drove significant upregulation using an Empirical FDR approach (EFDR < 306 0.1). f) Targeting gRNAs yielding significant upregulation are enriched for proximity to their target gene. We observe no 307 such enrichment for NTCs tested for associations with target genes randomly selected from the same set. g) Example 308 violin plots showing the average log2 fold change between cells with a given gRNA and controls for select hit gRNAs. 309 Hits include TSS positive controls (CCND2, GNB1), candidate promoters of genes rarely or not expressed in K562 cells 310 (ANK2, BCL11A) and candidate K562 enhancers (TSPAN5, TMSB4X, and ANXA1). Control cells are downsampled to 311 have the same number of cells as the average number of cells detected per gRNA (n = 178) for visualization. h) Hits 312 included multiple gRNAs targeting isoform-specific promoters of CHD8. Empirical P-values are visualized alongside 313 tracks for K562 ATAC-seq (ENCODE), H3K27ac signal (ENCODE), and RefSeq validated transcripts (ENSEMBL/NCBI) 314 i) The strongest hit gRNAs for ANK2 target the same promoter that is not prioritized by biochemical marks (e.g.,

315 accessibility or H3K27ac). Genomic tracks are the same as in panel **h**. Abbreviations: NTC: Non-targeting controls.

Figure 3 | Multiplex single cell CRISPRa screening of regulatory elements in post-mitotic iPSC-derived neurons.
 a) The same piggyFlex library as used in K562 experiments was introduced to a human WTC11 iPSC line harboring

319 TMP-inducible CRISPRa machinery and a Dox-inducible NGN2 transgene to drive neural differentiation. Following

320 selection and differentiation, cells were harvested and profiled with sc-RNA-seq to capture gRNAs and assign them to 321 single cell transcriptomes. Half of the neurons were sorted on GFP immediately prior to sc-RNA-seg to increase the 322 multiplicity of gRNA integrations. b) Following QC and gRNA assignment, we identified an average of 6.14 gRNAs/cell (median 3.0). c) Neuron gRNA coverage: each gRNA was identified in an average of 637.6 cells (median 509.0). d) 323 324 UMAP projection of the neuron dataset from this study (blue, 51,183 cells downsampled to 5,000 cells to aid with 325 visualization) onto a sc-RNA-seg differentiation time-course from a similar differentiation protocol and NGN2 iPSC line 326 (21,044 cells)²⁵. This reference time-course dataset is coloured from white to black based on differentiation day. e) (Left) 327 QQ-plot displaying observed vs. expected P-value distributions for targeting (blue) and NTC (downsampled) populations. 328 (Right) QQ-plot for targeting tests against their intended/programmed target (blue) compared to targeting tests of all other 329 genes with 1Mb of each gRNA (pink) and NTCs (gray downsampled). There is a clear excess of highly significant P-330 values for programmed targets compared to targeting tests of neighboring genes (pink) or NTCs (gray). f) Volcano plot 331 showing the average log2 fold change and P-values exclusively for gRNAs that target putative enhancers in K562 cells 332 (left) and iPSC-derived neurons (right). g) (Top) Heatmap showing the average log2 fold change in expression between 333 cells with each targeting gRNA vs. controls for each of the primary/programmed target genes. (Bottom) Categorical 334 heatmap showing which of the perturbations produced significant upregulation using an Empirical FDR approach (EFDR 335 < 0.1). h) Example violin plots showing the average log2 fold change between cells with a given gRNA and controls for 336 select hit gRNAs. Hits include TSS positive controls (CCND2, ZC3HAV1), candidate promoters of genes rarely or not 337 expressed NGN2, including the cortical neuron marker TBR1, and candidate promoters of genes with native expression 338 in iPSC-derived neurons that could be further upregulated (BCL11A, FOXP1, and TCF4). Control cells are downsampled 339 to have the same number of cells as the average number of cells detected per gRNA (n = 638) for visualization. i) Of 14 340 targeted candidate promoters, five hit gRNAs for TCF4 target the same candidate promoter that aligns with biochemical 341 marks of regulatory activity (ATAC-Seg and H3K27ac). Empirical P-values are visualized alongside tracks for iPSCderived neuron ATAC-seq (accessibility)³², and H3K27ac³², and RefSeq validated transcripts (ENSEMBL/NCBI). j) Hits 342 343 included multiple gRNAs targeting TBR1. Genomic tracks are the same as in panel i.

344

345 Supplementary figures

346

347 Figure S1 | gRNA design pipeline, library contents, and piggyFlex gRNA delivery construct. a) gRNA design 348 pipeline. First, candidate Cis-Regulatory Elements (cCREs) surrounding a gene of interest were identified based on 349 biochemical marks of regulatory activity (e.g., accessibility, active transcription, etc.). Next, candidate gRNAs targeting 350 each cCRE were generated using FlashFry³³. Then, gRNAs were scored and prioritized using multiple algorithms. Finally, 351 in the case of promoters where systematic CRISPRa design rules are available, gRNAs were prioritized based on optimal 352 position relative to the TSS²⁸. b) PiggyFlex gRNA library contents by target category. c) PiggyFlex construct design. 353 PiggyFlex is a piggyBac transposon-based gRNA delivery vector equipped with a dual antibiotic (puromycin) and 354 fluorophore (GFP) selection cassette that enables enrichment for cells with many integrated gRNAs¹⁸. PiggyFlex enables 355 direct capture of gRNA transcripts or optional capture of gRNA-associated barcodes from GFP mRNA via CS2 or polvdT 356 capture.

357

358

359 Figure S2 | Functional validation of CRISPRa K562 cell lines. a) Schematic of the minP-tdTomato functional assay 360 used to validate CRISPRa cell lines. Two plasmids, one encoding a minP-tdTomato and another encoding a gRNA 361 targeting a sequence immediately upstream of minP were co-nucleofected into K562 cell lines with either dCas9-VP64 362 or dCas9-VPR constructs integrated (only dCas9-VP64 is illustrated for simplicity). b) Following nucleofection, both 363 dCas9-VPR (top, lower magnification) and dCas9-VP64 (bottom, higher magnification) K562 cell lines drove strong 364 tdTomato expression, confirming the presence of functional CRISPRa machinery in these cell lines. dCas9-VPR images 365 represent two replicate transfections into a single monoclonal line, while dCas9-VP64 images each represent one 366 transfection replicate from two monoclonal lines. Note these are transient transfections without selection, so not all cells 367 are expected to have been successfully transfected and fluoresce under these conditions. c) Example FACS analysis of 368 tdTomato fluorescence in individual dCas9-VP64 transfection replicates of two monoclonal lines.

Figure S3 | Results for four independent 10x Genomics lanes from K562 screen. a) The four 10x Genomics lanes
 profiled included two lanes with dCas9-VP64 K562 cells and two lanes with dCas9-VPR K562 cells. Following QC and
 gRNA assignment we identified an average of 2.60, 3.13, 2.14, and 2.47 gRNAs/cell for the four different 10x Genomics
 lanes profiled (median 2.60, 3.13, 2.14, and 2.47 gRNAs per cell). PiggyBac integrations per cell distribution is not well-

374 modeled by a standard Poisson distribution and is better approximated by an exponential function. b) Multiplexing more 375 than one perturbation per cell yielded an average of 38.0, 51.0, 21.0, and 26.0 cells/gRNA for the four different 10x 376 Genomics lanes profiled (median 44.3, 58.1, 38.6, and 45.8 cells/gRNA). c) QQ-plots displaying observed vs. expected 377 P-value distributions for targeting (blue) and NTC (downsampled) populations across the four different 10x Geomics 378 lanes profiled. d) QQ-plots for targeting tests against their intended/programmed target (blue) compared to targeting tests 379 of all other genes with 1Mb of each gRNA (pink) and NTCs (gray downsampled) across the four different 10x Genomics 380 lanes profiled. e) Correlation plots of log2 fold changes of gRNAs across the two K562 cell lines (dCas9-VP64 and dCas9-381 VPR) for all four 10x Genomics lanes profiled. Pearson correlations of gRNA hits are shown. f) Matrix correlation plot 382 displaying the Pearson correlations of the log2(fold change) of target gene expression values for programmed targets 383 across the four different 10x Genomics lanes profiled. g) Violin plot displaying the log2(fold change) of target gene 384 expression values for programmed targets for K562 cells harboring the dCas9-VP64 activation complex and the dCas9-385 VPR activation complex.

387

Figure S4 | Hit breakdown for screen conducted in K562 cells. a) K562 hit gRNAs by cCRE category. **b)** K562 hit gRNAs by gRNA source library or design pipeline. **c)** Proportion of hit gRNAs by cCRE category. **d)** Proportion of hit gRNAs yielding upregulation of their intended/expected target gene or an alternate gene for candidate promoters/TSSs (left) or enhancers (right). Example hits targeting candidate NDD risk gene promoters (left) and K562 enhancers (right) are listed. Bracketed numbers denote the number of independent hit gRNAs targeting the same cCRE.

394 Figure S5 | Inducible CRISPRa iPSC-derived neuron line functional validation, selection, and differentiation 395 timeline. a) (Top) iPSCs equipped with a Dox-inducible NGN2 transcription factor to drive neural differentiation 396 (integrated at the AAVS1 safe harbor locus) and TMP-inducible CRISPRa-VPH machinery (integrated at the CLYBL 397 locus) were used for all iPSC-derived neuron experiments. (Bottom) In the absence of TMP, CRISPRa-VPH machinery 398 is degraded via a DHFR degron. In the presence of TMP, the CRISPR-VPH machinery is stabilized, enabling perturbation. 399 b) Functional validation of CRISPRa machinery in iPSC-derived neurons. Neurons were lipofected with a minP-tdTomato 400 reporter and sgRNA that targets the minimal promoter. CRISPRa machinery drove clear tdTomato expression in 401 differentiated neurons. c) Nucleofection, selection, and differentiation timeline. iPSCs were nucleofected with piggyFlex 402 gRNA constructs at a high MOI and selected with puromycin to enrich cells for with multiple integrated gRNAs. Following 403 differentiation induction neurons were subplated in maturation media with TMP to induce CRISPRa machinery. Neurons 404 were single cell profiled following 19 days of differentiation (10x Genomics V3.1 chemistry with direct gRNA capture).

393

405

Figure S6 | Results for four independent 10x Genomics lanes from iPSC-derived neuron screen. a) The four 10x
Genomics lanes profiled consisted of two lanes with dCas9-VPH neurons that were sorted on the top 40% of GFP
expression in these cells, and two lanes that were not on the top 40% of GFP expression in these cells. The cells that
were not sorted were still 100% GFP+. Following QC and gRNA assignment we identified an average of 7.71, 7.91, 4.55,
and 4.39 gRNAs/cell for the four different 10x Genomics lanes profiled (median 7.71, 7.91, 4.55, and 4.39 gRNAs per

411 cell). Note that sorting neurons on the top 40% of GFP expression boosted the median and mean gRNAs/cell ~2 fold. 412 PiggyBac integrations per cell distribution is not well-modeled by a standard Poisson distribution and is better 413 approximated by an exponential function. b) Multiplexing multiple perturbations per cell yielded an average of 218.7, 414 189.9, 118.1, and 114.4 cells/gRNA for the four different 10x Genomics lanes profiled (median 166, 146, 98, and 96 415 cells/gRNA). c) QQ-plots displaying observed vs. expected P-value distributions for targeting (blue) and NTC 416 (downsampled) populations across the four different 10x Genomics lanes profiled. d) QQ-plots for targeting tests against 417 their intended/programmed target (blue) compared to targeting tests of all other genes with 1Mb of each gRNA (pink) 418 and NTCs (gray downsampled) across the four different 10x Genomics lanes profiled. e) Matrix correlation plot displaying 419 the Pearson correlations of the log2(fold change) of target gene expression values for programmed targets across the 420 four different 10x Genomics lanes profiled. f) Violin plot displaying the log2(fold change) of target gene expression values 421 for programmed targets for neurons that were sorted on the top 40% GFP expression (sorted) and neurons that were not

422 sorted (not sorted)

424

425 Figure S7 | Single-cell transcriptomic characterization of iPSC-derived neurons used in screen. a) Expression 426 feature plots of canonical pluripotency markers NANOG, POU5F1, KLF4, FBXO15, and PODXL. b) Expression feature 427 plots of pan-neuronal markers MAP2, RBFOX3, MAPT, ANK3, and NCAM1. c) Expression feature plots of central 428 nervous system marker genes LHX9, GPM6A, and POU4F1. d) Expression feature plots of peripheral nervous system 429 marker genes PHOX2B and PRPH. e) Expression feature plots of cortical excitatory neuron markers HOMER1, CUX1, 430 and SLC17A7. f) Expression feature plots of GABAergic neuron marker genes GAD1 and GAD2.

431

Figure S8 | Distribution of CRISPRa gRNAs in single-cell neuron transcriptome data. Cells harboring specific
 CRISPRa gRNAs (dark blue) overlaid onto *NGN2*-induced neuron differentiation transcriptome data²⁵. No readily
 apparent spatial enrichment of gRNAs is observed in UMAP plots. Note that the CRISPRa dataset was randomly
 downsampled to 5000 cells for all UMAP comparison analyses.

436

437 Figure S9 | Successful targeting gRNAs are enriched for genomic proximity to their paired target gene scores

438 near target genes in the iPSC-derived neurons. a) Targeting gRNAs yielding significant upregulation are enriched for
 439 proximity to their target gene, while NTCs are not. b) Same plot as in a, with the y-axis clipped at 50.

440

Figure S10 | Hit breakdown for screen conducted in iPSC-derived neurons. a) Neuron hit gRNAs by cCRE category.
b) Neuron hit gRNAs by gRNA source library or design pipeline. c) Proportion of hit gRNAs by cCRE category. d)
Proportion of hit gRNAs yielding upregulation of their intended/expected target gene or an alternate gene for candidate
promoters/TSSs. Example hits targeting candidate NDD risk gene promoters are listed. Bracketed numbers denote the
number of independent hit gRNAs targeting the same cCRE.

b

446

447 Figure S11 | Comparison of K562 vs. neuronal CRISPRa screening hits. a) Venn diagram showing number of 448 overlapping promoter-targeting gRNA hits (left) and enhancer-targeting gRNA hits (right) between the K562 and neuron 449 CRISPRa screens. b) Correlation plots of log2 fold changes of TSS positive control targeting gRNAs (top left), ASD/NDD 450 promoter targeting gRNAs (top right), enhancer targeting gRNAs (bottom left), and NTC gRNAs (bottom right) between 451 the K562 and neuron CRISPRa screens.

452

453 Figure S12 | Characteristics of gRNAs leading to upregulation at EFDR<0.1 vs. EFDR>0.1. a) Comparison of 454 normalized gene expression values of targeted genes of gRNAs that resulted in an EFDR<0.1 (designated as "hit" 455 gRNAs) versus gRNAs that resulted in an EFDR>0.1 (not designated as "hit" gRNAs). b) Comparison of the percentage 456 of cells expressing the target gene of gRNAs that resulted in an EFDR<0.1 versus gRNAs that resulted in an EFDR>0.1. 457 c) GC content (in percent) of gRNAs that resulted in an EFDR<0.1 versus gRNAs that resulted in an EFDR>0.1. d) 458 Number of cells harboring each gRNA for gRNAs that resulted in an EFDR<0.1 versus gRNAs that resulted in an 459 EFDR>0.1. For all panels, K562 promoter-targeting gRNAs (left), K562 enhancer-targeting gRNAs (middle), and neuron 460 promoter-targeting gRNAs (right) are shown. Abbreviations: n.s.: not significant (p>0.05, Wilcoxon rank sum test), *: 461 p<0.05 (Wilcoxon rank sum test).

462

463 Figure S13 | TSS and cell-type specific promoters. a) The majority of hit gRNAs for TCF4 target the same TSS in

K562 cells and iPSC-derived neurons. Empirical *P*-values are visualized alongside tracks for K562 ATAC-seq (ENCODE),
 K562 H3K27ac signal (ENCODE), iPSC-derived neuron ATAC-seq (accessibility)³², iPSC-derived neuron H3K27ac³² and

466 RefSeq validated transcripts (ENSEMBL/NCBI). **b)** Two hit gRNAs targeting the same TSS of *TBR1* drive upregulation

467 specifically in iPSC-derived neurons. Genomic tracks are the same as in panel **a**.

Figure S14 | Cell-type specific enhancers. a-d) Empirical *P*-values are visualized alongside tracks for K562 ATAC-seq
 (ENCODE), K562 H3K27ac signal (ENCODE), iPSC-derived neuron ATAC-seq (accessibility)³², iPSC-derived neuron
 H3K27ac³² and RefSeq validated transcripts (ENSEMBL/NCBI). All K562 enhancer hits were cell type specific.

473 Enhancers with multiple hit gRNAs are shown.

474 Acknowledgements

We are grateful to members of the Shendure and Ahituv labs, as well as members of the Sanders, Bender, Bateup, and Feldman labs for comments, suggestions, and discussions on this work. We are particularly grateful to the Shendure lab gene regulation subgroup for technical advice and deep discussions regarding the development of the CRISPRa screening method. The Human WTC11 *NGN2* ecDHFR-dCas9-VPH line was a kind gift from the M. Kampmann lab at UCSF. Lenti dCAS9-VP64 GFP (Addgene plasmid # 61422) was a kind gift from the F. Zhang lab at Broad/MIT.

480

481 Funding

This work was supported by the Weill Neurohub (to S.J.S., N.A., and J.S.), the National Human Genome Research Institute (UM1HG011966 to N.A. and J.S.) and the National Institute of Mental Health (U01MH122681 and R01MH116999 to S.J.S.). T.A.M was supported by a Banting Postdoctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). N.F.P. was supported by a National Science Foundation (NSF) graduate research fellowship. D.C. was supported by award no. F32HG011817 from the National Human Genome Research Institute. J.S. is an Investigator of the Howard Hughes Medical Institute.

488

489 Author contributions

Conceptualization, J.S. and N.A.; Investigation, F.M.C., T.A.M., and N.F.P.; Data Curation, F.M.C., T.A.M., and N.F.P.;
Formal Analysis, F.M.C., T.A.M., and N.F.P.; Visualization, F.M.C. and T.A.M.; Resources, N.A. and J.S.; Supervision,
L.S., S.J.S., N.A. and J.S.; Writing – Original Draft, F.M.C., T.A.M., J.S.; Writing – Review & Editing, F.M.C., T.A.M.,
N.F.P., B.M., S.D., S.R., J.B.L., D.C., L.S., S.J.S., N.A, and J.S.; Funding Acquisition, S.J.S., N.A., and J.S.

494

495 Competing interests

S.J.S. receives research funding from BioMarin Pharmaceutical Incorporated. N.A. is the cofounder and on the scientific
 advisory board of Regel Therapeutics and receives funding from BioMarin Pharmaceutical Incorporated. J.S. is a
 scientific advisory board member, consultant and/or co-founder of Cajal Neuroscience, Guardant Health, Maze
 Therapeutics, Camp4 Therapeutics, Phase Genomics, Adaptive Biotechnologies, Scale Biosciences, Sixth Street Capital
 and Pacific Biosciences. All other authors declare no competing interests.

501

502 Data Availability

Raw sequencing data and processed files generated in this study will be deposited to GEO. Raw data, processed data,
 code, and scripts used for analyses are all publicly available and are accessible via the following website:
 https://krishna.gs.washington.edu/content/members/CRISPRa QTL website/public/.

506

507 Supplementary Materials

- 508 Figures S1-S14
- 509 1. **Figure S1** gRNA design pipeline, library contents, and piggyFlex gRNA delivery construct.
- 510 2. Figure S2 Functional validation of CRISPRa K562 cell lines.
- 511 3. **Figure S3** Results for four independent 10x Genomics lanes from K562 screen.
- 512 4. **Figure S4** Hit breakdown for screen conducted in K562 cells.
- 5. **Figure S5** Inducible CRISPRa iPSC-derived neuron line functional validation, selection, and differentiation timeline.
- 515 6. Figure S6 Results for four independent 10x Genomics lanes from iPSC-derived neuron screen.

- 516 7. **Figure S7** Single-cell transcriptomic characterization of iPSC-derived neurons used in screen.
 - 8. Figure S8 Distribution of CRISPRa gRNAs in single-cell neuron transcriptome data.
- 518 9. Figure S9 Successful targeting gRNAs are enriched for genomic proximity to their paired target gene scores
 519 near target genes in the iPSC-derived neurons.
- 520 10. Figure S10 Hit breakdown for screen conducted in iPSC-derived neurons.
- 521 11. Figure S11 Comparison of K562 vs. neuronal CRISPRa screening hits.
- 522 12. Figure S12 Characteristics of gRNAs leading to upregulation at EFDR<0.1 vs. EFDR>0.1.
- 523 13. Figure S13 TSS and cell-type specific promoters.
- 524 14. Figure S14 Cell-type specific enhancers.

525 526 **Tables S1-S7**

517

- 527 1. Table S1 gRNA sequences.
- 528 2. Table S2 K562 full screen results.
- 529 3. Table S3 K562 primary target results.
- 530 4. Table S4 K562 hits (EFDR < 0.1).
- 5. **Table S5** iPSC-derived neuron full screen results.
- 532 6. **Table S6** iPSC-derived neuron primary target results.
- 533 7. Table S7 iPSC-derived neuron hits (EFDR < 0.1).

534 Methods

535

536 Cell Lines and Culture

537 K562 cell culture

K562s cells are a pseudotriploid ENCODE Tier I erythroleukemia cell line derived from a female (age 53) with chronic
myelogenous leukemia¹⁵. All K562 cells were grown at 37°C, and cultured in RPMI 1640 + L-Glutamine (GIBCO, Cat.
No. 11-875-093) supplemented with 10% fetal bovine serum (Rocky Mountain Biologicals, Cat No. FBS-BSC) and 1%
penicillin-streptomycin (GIBCO/ Thermo Fisher Scientific; Cat. No. 15140122).

542

543 Induced pluripotent stem cell (iPSC) culture

544 Human WTC11 iPSCs equipped with a doxycycline-inducible NGN2 transgene expressed from the AAVS1 safe-harbor 545 locus as well as an ecDHFR-dCas9-VPH construct (VPH consists of 12 copies of VP16, fused with a P65-HSF1 activator 546 domain) expressed from the CLYBL safe-harbor locus were a gift from the Kampmann lab⁶. These iPSCs were cultured 547 in mTeSR Plus Basal Medium (Stemcell technologies; Cat. No. 100-0276) on Greiner Cellstar plates (Sigma-Aldrich; 548 assorted Cat. Nos.) coated with Geltrex™ LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane 549 Matrix (Gibco; Cat. No. A1413302) diluted 1:100 in Knockout DMEM (GIBCO/Thermo Fisher Scientific; Cat. No. 550 10829018). mTeSR Plus Basal Medium was replaced every other day. When 70-80% confluent, cells were passaged by 551 aspirating media, washing with DPBS (GIBCO/Thermo Fisher Scientific; Cat. No. 14190144), incubating with StemPro 552 Accutase Cell Dissociation Reagent (GIBCO/Thermo Fisher Scientific; Cat. No. A1110501) at 37 °C for 5 min, diluting 553 Accutase 1:1 in mTeSR Plus Basal Medium, collecting cells in conical tubes, centrifuging at 800g for 3 min, aspirating 554 supernatant, resuspending cell pellet in mTeSR Plus Basal Medium supplemented with 0.1% dihydrochloride ROCK 555 Inhibitor (Stemcell technologies; Cat. No. Y-27632), counting and plating onto Geltrex-coated plates at the desired 556 number.

557

558 Human iPSC-derived neuronal cell culture, differentiation, and CRISPRa induction

559 The iPSCs described above were used for the differentiation protocol below. On day -3, iPSCs were dissociated and 560 centrifuged as above, and pelleted cells were resuspended in Pre-Differentiation Medium containing the following: Knockout DMEM/F-12 (GIBCO/Thermo Fisher Scientific; Cat. No. 12660012) as the base, 1X MEM Non-Essential Amino 561 562 Acids (GIBCO/Thermo Fisher Scientific; Cat. No. 11140050), 1X N-2 Supplement (GIBCO/ Thermo Fisher Scientific; Cat. 563 No. 17502048), 10 ng/mL NT-3 (PeproTech; Cat. No. 450-03), 10ng/mL BDNF (PeproTech; Cat. No. 450-02), 1 ug/mL 564 Laminin mouse protein (Thermo Fisher Scientific; Cat. No. 23017015), 10 nM ROCK inhibitor, and 2 mg/mL doxycycline 565 hyclate (Sigma-Aldrich; Cat. No. D9891) to induce expression of NGN2. iPSCs were counted and plated at 800K cells 566 per Geltrex-coated well of a 12-well plate in 1 mL of Pre-Differentiation Medium, for three days. At day -2 and day -1, 567 media changes were performed using pre-differentiation medium without ROCK inhibitor. On day -1, 12-well plates for 568 differentiation were coated with 15 ug/mL Poly-L-Ornithine (Sigma-Aldrich; Cat. No. P3655) in DPBS, and incubated 569 overnight at 37 degrees Celsius. On day 0, the Poly-L-Ornithine coated plates were washed three times using DPBS, 570 and the plates were air dried in a 37 degree Celsius incubator until all the DPBS evaporated. Pre-differentiated cells were 571 dissociated and centrifuged as above, and pelleted cells were resuspended in Maturation Medium containing the 572 following: 50% Neurobasal-A medium (GIBCO/Thermo Fisher Scientific; Cat. No. 10888022) and 50% DMEM/F-12 573 (GIBCO/Thermo Fisher Scientific; Cat. No. 11320033) as the base, 1X MEM Non-Essential Amino Acids, 0.5X GlutaMAX 574 Supplement (GIBCO/Thermo Fisher Scientific; Cat. No. 35050061), 0.5X N-2 Supplement, 0.5X B-27 Supplement 575 (GIBCO/Thermo Fisher Scientific; Cat. No. 17504044), 10 ng/mL NT-3, 10 ng/mL BDNF, 1 ug/mL Laminin mouse protein, 576 and 2 ug/mL doxycycline hyclate. Pre-differentiated cells were subsequently counted and plated at 400,000-450,000 cells 577 per well of a 12-well plate coated with Poly-L-Ornithine in 1 mL of Maturation medium with 20 uM trimethoprim (TMP) 578 (Sigma-Aldrich, Cat No. 92131) to activate the CRISPRa machinery in these cells (TMP stabilizes the degron-tagged CRISPRa machinery). On day 7, half of the medium was removed and an equal volume of fresh Maturation medium 579

- without doxycycline was added. On day 14, half of the medium was removed and twice that volume of fresh medium
 without doxycycline was added. On day 19, neurons were harvested for sc-RNA-seq.
- 582

583 Cell line generation and CRISPRa validation

584 K562 cells

585 K562 cells expressing dCas9-VP64 were generated in-house via lentiviral integration of a dCas9-VP64-blast construct⁷ 586 (Addgene Plasmid #61422) into K562 cells. Cells were selected with 10 ug/mL blasticidin, and polyclonal cells were 587 single-cell sorted into 96-well plates to grow up clonal cell lines expressing dCas9-VP64. Clonal cell lines were tested for 588 CRISPRa activity by testing the ability of a CRISPRa gRNA to activate a minP-tdTomato construct²⁰, and the highest 589 tdTomato expressing cell line was used for experiments. K562 cells expressing dCas9-VPR were purchased from Horizon 590 Discovery/Perkin Elmer (catalog ID: HD dCas9-VPR-005), and these cells were tested for CRISPRa activity using the 591 same tdTomato expression assay described above.

592

593 iPSC-derived neurons

Human WTC11 iPSCs equipped with a doxycycline-inducible *NGN2* transgene expressed from the *AAVS1* safe-harbor
 locus as well as an ecDHFR-dCas9-VPH construct expressed from the CLYBL safe-harbor locus were a gift from the
 Kampmann lab⁶. These cells were tested for CRISPRa activity using the same tdTomato expression assay that was used
 to validate the K562 cell lines, which is described above.

598

599 gRNA selection and design

600 A complete breakdown of gRNA library contents and overview of the gRNA design pipeline is illustrated in Figure S1. 601 Briefly, enhancer-targeting gRNAs were selected from our CRISPRi library^{2,33}. Specifically, 50 spacer sequences (2 per 602 candidate enhancer) were randomly selected from the list of 664 significant "hit" enhancer-gene pairs in the at-scale 603 library. Another 50 spacer sequences targeting an additional 25 candidate enhancers (again 2 per candidate enhancer) 604 were randomly selected from candidate enhancer non-hits (i.e., gRNAs from the at-scale library targeting candidate 605 enhancer regions with strong biochemical marks predictive of regulatory activity that did not yield significant 606 downregulation of any neighboring genes in our previous CRISPRi study). An additional 30 TSS-positive control gRNAs 607 were randomly sampled from the top quartile of gRNAs recommended by Horlbeck et al. (hCRISPRa-v2 library)¹⁶. 50 608 NTC negative control spacer sequences were also selected from the hCRISPRa-v2 library¹⁶. The 313 candidate promoter 609 targeting gRNAs were either selected from the Horlbeck *et al.* library¹⁶ or designed using FlashFry³³ (Figure S1). Briefly, 610 50 candidate promoters of 9 NDD risk genes (TCF4, FOXP1, SCN2A, CHD8, BCL11A, TBR1, SHANK3, SYNGAP1, 611 ANK2)^{23,24} were pulled from Basic GENCODE annotations³⁴ and were filtered for "type" == "transcript" and 612 "transcript_type" == "protein coding". Separate bed files were generated for all promoter regions defined as the 500bp 613 upstream of each protein coding transcript. Careful attention was paid to the strand orientation of each transcript when 614 annotating promoter regions. Bed files were sorted and merged to combine multiple promoters with >1bp overlap into a 615 single promoter annotation. Transcript bounds provided for each merged promoter begin +1bp from the end of the 616 promoter and end at the position corresponding to the longest transcript mapping to that promoter. NGG-protospacer 617 within these candidate promoters were identified using FlashFry and subsequently scored using default parameters (see 618 FlashFry manuscript and user guide for a complete description of scoring metrics/algorithms)³³. A TSS-distance metric 619 was then calculated for each gRNA using human fetal brain 5' Capped Analysis of Gene Expression (CAGE) data^{35,36} 620 obtained from FANTOM (https://fantom.gsc.riken.jp/5/sstar/FF:10085-102B4: CTSS, hg38). First, the strongest FANTOM 621 annotated TSS was identified within each +/-500 bp region up and downstream of each hg38 Gencode Basic protein 622 coding transcript TSS. For regions with a tie between the highest scoring FANTOM TSSs, the TSS position closest to 623 Gencode annotated TSS position was prioritized. Each candidate sgRNA from FlashFry was annotated with the distance 624 to the nearest FANTOM TSS using the command "bedtools closest -a sgRNAs with fantom tss -b 625 strongest fantom tss within gencode promoter -D b -t first." For Gencode Basic protein coding transcripts without a 626 human fetal brain FANTOM peak within 500 +/- bp, the distance of each sgRNA to the nearest Gencode TSS was

reported instead. A distance of zero indicates that an sgRNA overlaps with the nearest annotated TSS. Multiple rounds
 of successively relaxing score and distance thresholds were then iterated until the top 4 gRNAs for each candidate
 promoter were selected (five selection rounds in total). Optimal TSS-distances were approximated using genome-wide
 CRISPRa design rules²⁸. gRNAs flagged for potentially problematic polythymidine tracks or GC content were excluded.
 The gRNA selection criteria used in each round were as follows:

- 632
 Round 1: 1. TSS Distance between -150 and -75 BP 2. Doench2014OnTarget >= 0.2 3. Dangerous_in_genome

 633
 <= 1 4. Hsu2013 > 80.
- 634
 Round 2: 1. TSS Distance between -400 and -50 BP 2. Doench2014OnTarget >= 0.2 3. Dangerous_in_genome

 635
 <= 1 4. Hsu2013 > 80.
- 636
 Round 3: 1. TSS Distance between -400 and -50 BP 2. Doench2014OnTarget >= 0.2 3. Dangerous_in_genome

 637
 <= 1 4. Hsu2013 > 50.
- 638 **Round 4: 1.** TSS Distance between -400 and -50 BP 2. Doench2014OnTarget >= 0.2 3. Dangerous_in_genome 639 <= 2 4. Hsu2013 > 50.
- 640
 Round 5: 1. Doench2014OnTarget >= 0.2 2. Dangerous_in_genome <= 2 3. Hsu2013 > 10 4.

 641
 DoenchCFD_maxOT < 0.95</td>
- 642

643 Complete oligo sequences with gRNA spacers and additional sequences for cloning into piggyFlex are listed in Table
 644 S1. Note all gRNAs in our library are designed/modified to start with a G followed by the 19 base pair spacer to facilitate
 645 Pol III transcription.

646

647 gRNA library cloning into piggyFlex vector

648 The 493 gRNAs with associated 10N random barcodes were ordered as an IDT oPool and PCR amplified with Q5 High-649 Fidelity polymerase (NEB, Cat. No. M0491S) to make double stranded DNA. The piggyFlex backbone vector was 650 digested with Sall (NEB, Cat. No. R3138S) and Bbsl (NEB, Cat. No. R0539S) in 10X NEBuffer r2 at 37 degrees Celsius overnight to ensure complete digestion of the backbone. This digestion cuts out the EF1a-puro-GFP cassette of the 651 652 vector which is then added back in a later cloning step. The digestion product was run on a 1% agarose gel in TAE buffer. 653 and the linear backbone vector (5098 base pairs in size) was gel extracted using a gel extraction kit (NEB, Cat. No. 654 T1020S). The second product from the digestion (2878 base pairs) which contains the EF1a-puro-GFP cassette was 655 saved for a later assembly reaction in the final cloning step (described below). The PCR amplified IDT oPool gRNAs with 656 associated 10N random barcodes were cloned into the linear backbone using NEBuilder HiFi DNA Assembly (NEB, Cat. 657 No. E2621S) using 0.15 pmol of the insert (gRNA library) and 0.02 pmol of the linear backbone. Assembled product was 658 transformed into electrocompetent cells (NEB, Cat. No. C3020K) and plasmid DNA was extracted with a midiprep kit 659 (Zymo Research, Cat. No. D4200). The resulting vector was then digested with Sapl (NEB, Cat. No. R0569S), for one 660 hour at 37 degrees Celsius. Digested product was cleaned with 0.5X AMPure beads (Beckman Coulter, Cat. No. A63880) 661 and cleaned digested linear backbone was used for a subsequent assembly reaction to add the EF1a-puro-GFP 662 cassette back into the final piggyFlex vector between the gRNA sequence and the 10N random barcode sequences. 663 0.014 pmol of the linear backbone was assembled with 0.056 pmol of the insert sequence and the assembly 664 reaction was cleaned with a 0.5X AMPure step. The assembled product was transformed into electrocompetent cells 665 and plasmid DNA was extracted with a midiprep kit. The final plasmid library was subsequently PCR amplified and 666 sequenced to ensure that all 493 gRNAs were successfully cloned into the piggyFlex vector. Note: The 10N barcode is 667 an additional gRNA identification strategy that can be used to assign gRNAs to cells, however, we used directly 668 sequenced gRNAs (from the 10x Genomics capture sequence) to identify gRNAs in this work as this more accurately 669 assigns gRNA transcripts to cells³⁷.

670

671 <u>Transfection of the gRNA library and selection for transfected cells</u>

672 K562 cells

16 million K562 cells (8 million K562-VP64 cells and 8 million K562-VPR cells) were transfected with the gRNA library and the piggyBac transposase (System Biosciences, Cat. No. PB210PA-1) at a 20:1 molar ratio of library:transposase using a Lonza 4D nucleofector and the Lonza nucleofector protocol for K562 cells. The 16 million cells were split across 8 100 uL nucleofection cartridges, with each individual nucleofection cartridge receiving 2 million cells and 2 ug of total DNA. After nucleofection, cells were transferred to pre-warmed RPMI media in a cell culture flask and incubated at 37 degrees Celsius. One day after transfection, cells were selected with 2 ug/mL puromycin (GIBCO/Thermo Fisher Scientific; Cat. No. A1113803). After 9 days, cells were harvested for single-cell transcriptome profiling.

680

681 Induced pluripotent stem cells

682 6 million dCas9-VPH iPSCs (same cells as described above) were transfected with the gRNA library and the piggyBac 683 transposase at a 5:1 molar ratio of library:transposase using the Lonza nucleofector and the Lonza nucleofector CB-150 684 program. The 6 million cells were split across 6 100 uL nucleofection cartridges, with each individual nucleofection 685 cartridge receiving 1 million cells and 17.5 ug of total DNA. After nucleofection, cells were transferred to pre-warmed 686 mTeSr Plus basal medium with ROCK inhibitor in a cell culture flask and incubated at 37 degrees Celsius. One day after 687 transfection, cells were selected with 20 ug/mL puromycin (note: the AAVS1-NGN2 construct has a puromycin resistance 688 cassette on it, so a higher dose of puromycin was used to successfully select for cells that received a gRNA in the 689 presence of an existing puromycin resistance cassette). Media changes were performed daily (mTeSr Plus basal medium 690 with ROCK inhibitor and 10 ug/mL puromycin) for seven days prior to initiating neuron differentiation (described in "Human 691 iPSC-derived neuron cell culture and differentiation" methods section).

692

693 <u>10x Genomics sc-RNA-seq with associated gRNA transcript capture</u>

694 K562 screen

695 Cells were harvested and prepared into single-cell suspensions following the 10x Genomics Single Cell Protocols Cell 696 Preparation Guide (Manual part number CG00053, Rev C). Four lanes were used for the single-cell transcriptome 697 profiling, with two lanes containing cells from the K562-VP64 cell line, and two lanes containing cells from the K562-VPR 698 cell line. Roughly 10,000 cells were captured per lane of a 10x Chromium chip (Next GEM Chip G) using Chromium Next 699 GEM Single Cell 3' Reagent Kits v3.1 with Feature Barcoding technology for CRISPR Screening (10x Genomics, Inc, 700 Document number CG000205, Rev D).

701

702 iPSC-derived neuron screen

703 iPSC-derived neurons were harvested and prepared into single-cell suspensions following a published protocol ³⁸. Cells 704 were split into two batches, with one batch going through a fluorescence-activated cell sorting (FACS) step to sort on the 705 top 40% of green fluorescent protein (GFP) expression to enrich for neurons with greater numbers of gRNAs integrated, 706 and the second batch going directly into the 10x Genomics single-cell library preparation protocol. Sorting on the top 40% 707 of GFP expression resulted in a two-fold increase in the mean number of gRNAs integrated in those cells as compared 708 to unsorted cells. Four lanes were used for the single-cell transcriptome profiling, with two lanes containing GFP-positive 709 sorted cells, and two lanes containing unsorted cells. Roughly 13,000 cells were captured per lane of a 10x Chromium 710 high-throughput chip (Next GEM Chip M) using Chromium Next GEM Single Cell 3' HT Reagent Kits v3.1 (Dual Index) 711 with Feature Barcode technology for CRISPR Screening (10x Genomics, Inc, Document number CG000418, Rev C).

712

713 Sequencing of scRNA-seq libraries

Final libraries were sequenced on a NextSeq 2000 P3 100 cycle kit (R1:28 I1:10, I2:10, R2:90) for each screen (K562 and iPSC-derived neuron screens). Gene expression and gRNA transcript libraries were pooled at a 4:1 ratio for

- 716 sequencing.
- 717

718 Transcriptome data processing and quality control filtering for K562 and iPSC-derived neuron screens

CellRanger version 6.0.1 was used to perform bcl2fastq and count matrix generation. CellRanger mkfastq was run using default parameters, and CellRanger count was run using the GRCh38-3.0.0 reference transcriptome from 10x Genomics and default parameters. For the K562 screen, cells with greater than 10% mitochondrial reads and less than 4000 UMIs were filtered out. For the iPSC-derived neuron screen, cells with greater than 17% mitochondrial reads and less than 1500 unique molecular identifiers (UMIs) were filtered out. After quality control filtering, 33,944 cells were retained in the K562 screen, and 51,183 cells were retained in the iPSC-derived neuron screen. The resulting count matrix output after this filtering was used for all downstream analyses.

726

727 Neuron differentiation transcriptome projection

728 Single-cell transcriptome data from a time course study of iPSC-derived neurons²⁶ was downloaded from 729 https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10632 (Accession E-MTAB-10632, No. 730 matrices timecourse.tar.gz), and integrated with the neuron CRISPRa screening dataset described here. Seurat v4 was 731 used for all data analyses³⁹. The CRISPRa dataset was randomly downsampled to 5,000 cells for this analysis. Count 732 matrices from both matrices were filtered to include only shared genes from the two datasets (n=14,777 genes). 733 SelectIntegrationFeatures() and FindIntegrationAnchors() were run using default parameters to identify anchors for 734 integration. 20,606 anchors were found and 2,953 anchors were retained for data integration. IntegrateData() was run 735 using the retained 2,953 anchors to integrate the two datasets. After integration, standard Seurat single-cell analysis was 736 performed to scale the data, and run the PCA and UMAP algorithms.

737

738 gRNA assignment and differential gene expression testing

Genomic coordinates (hg38) for final gRNA spacers were isolated using a loop built around the matchPattern() function
 from the BSgenome package⁴⁰. A 2Mb window (1Mb upstream and downstream) around each gRNA was then calculated
 and all genes within the 2Mb window were isolated using a loop built around ENSEMBL biomaRt getBM() function^{41,42}.
 These 1Mb neighboring gene sets were then filtered to unique entries (unique HGNC symbols) for compatibility with the
 Seurat FindMarkers() function used in DE testing.

A global UMI filter of 5 gRNA UMIs/cell was used to assign gRNAs to single cell transcriptomes for both K562 and iPSCderived neuron datasets (note this heuristic threshold was chosen based on manual inspection of the UMI count distributions for each gRNA and prior work)². gRNA UMI counts for each cell were derived from the count matrix of passing cells output by CellRanger (which applies an automatic total UMI threshold to cells) and which also passed QC.

Expression of a given gene within 1Mb of the gRNA of interest was compared between all cells with a given gRNA and all other cells as control. log2() fold changes in expression for a given gene were calculated using the Seurat FindMarkers() function with the following arguments: ident.1 = gRNA_Cells, ident.2 = Control_Cells, min.pct = 0, min.cells.feature = 0, min.cells.group = 0, features = target_gene, logfc.threshold = 0. A Wilcoxon rank-sum test was used to generate raw differential expression *P*-values. This process was then iterated for all genes within 1Mb of all gRNAs. NTCs were tested against all genes within 1Mb of any targeting gRNA. Only tests involving genes detected in >0.2% of test gRNA and control cells were carried forward.

These raw differential expression *P*-values were then used to calculate empirical P-values to call EFDR < 0.1 sets^2 . Specifically, an empirical *P*-value was calculated for each gRNA-gene test as:

- 757
- 758 [(the number of NTCs with a P-value lower than that test's raw P-value) + 1]/
- 759 [the total number of NTCs tests + 1]
- 760
- T61 Empirical *P*-values were then Benjamini-Hochberg corrected, and those < 0.1 were kept for 10% EFDR sets.
- 762

Log2 fold changes between gRNA and control cells were visualized using the gviz package⁴³ along with tracks for RefSeg 763 764 transcripts (ENSEMBL biomaRt), H3K27ac, and ATAC seq peaks. The K562 ATAC and H3K27ac data were downloaded 765 from ENCODE 44. ATAC-seg and H3K27ac CUT&RUN data from 7-8 week old NGN2-iPSC inducible excitatory neurons 766 was obtained from Song et al. 2019³². As previously described, ATAC-seq and CUT&RUN reads were trimmed to 50bp 767 using TrimGalore with the command --hardtrim5 50 before alignment (https://github.com/FelixKrueger/TrimGalore). 768 ATAC-seq reads were realigned to hg38 using the standard Encode Consortium ATAC-seq and ChIP-seq pipelines 769 respectively with default settings and pseudo replicate generation turned off. Trimmed, sorted, duplicate and chrM 770 removed ATAC-seq bam files from multiple biological replicates were combined into a single bam file using samtools 771 merge v1.1045. Trimmed CUT&RUN reads were realigned to hg38 using Bowtie2 v2.3.5.1 with the following settings --772 local --very-sensitive-local --no-mixed --no-discordant -I 10 -X 700 and output sam files were convert to bam format using 773 samtools view^{45,46}. Duplicated reads were removed from the CUT&RUN bam file using Picard MarkDuplicates v2.26.0 774 with the --REMOVE DUPLICATES =true and --ASSUME SORTED=true options (http://broadinstitute.github.io/picard/). 775 Finally, bam files were converted using the bedtools genomecov followed by the UCSC bedGraphToBigWig utility.

776 References

- Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked
 human enhancers. *Nat. Rev. Genet.* 21, 292–310 (2020).
- Gasperini, M. *et al.* A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens. *Cell* **176**, 377–390.e19 (2019).
- Fulco, C. P. *et al.* Systematic mapping of functional enhancer–promoter connections with CRISPR interference. *Science* 354, 769–773 (2016).
- Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed Engineering and Analysis of Combinatorial Enhancer
 Activity in Single Cells. *Mol. Cell* 66, 285–299.e5 (2017).
- 5. Gilbert, L. A. *et al.* Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. *Cell* **159**, 647–
 661 (2014).
- 787 6. Tian, R. *et al.* Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. *Nat.*788 *Neurosci.* 24, 1020–1034 (2021).
- 789 7. Konermann, S. *et al.* Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature*517, 583–588 (2014).
- 8. Schmidt, R. *et al.* CRISPR activation and interference screens decode stimulation responses in primary human T
 cells. *Science* 375, eabj4008 (2022).
- 9. Simeonov, D. R. *et al.* Discovery of stimulation-responsive immune enhancers with CRISPR activation. *Nature*549, 111–115 (2017).
- Matharu, N. *et al.* CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by
 haploinsufficiency. *Science* 363, (2019).
- Tamura, S. *et al.* CRISPR activation rescues abnormalities in SCN2A haploinsufficiency-associated autism
 spectrum disorder. *bioRxiv* 2022.03.30.486483 (2022) doi:10.1101/2022.03.30.486483.
- 12. Dai, Z. et al. Inducible CRISPRa screen identifies putative enhancers. J. Genet. Genomics 48, 917–927 (2021).
- 13. Tak, Y. E. *et al.* Augmenting and directing long-range CRISPR-mediated activation in human cells. *Nat. Methods*18, 1075–1081 (2021).
- 14. Joung, J. *et al.* Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood.
- 803 Nature **548**, 343–346 (2017).
- 15. Zhou, B. *et al.* Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line
- 805 K562. Genome Res. 29, 472–484 (2019).

- 806 16. Horlbeck, M. A. *et al.* Compact and highly active next-generation libraries for CRISPR-mediated gene repression
 807 and activation. *Elife* 5, (2016).
- 808 17. Matharu, N. & Ahituv, N. Modulating gene regulation to treat genetic disorders. *Nat. Rev. Drug Discov.* 19, 757–
 809 775 (2020).
- 810 18. Lalanne, J.-B. et al. Multiplex profiling of developmental enhancers with quantitative, single-cell expression
- 811 reporters. *bioRxiv* 2022.12.10.519236 (2022) doi:10.1101/2022.12.10.519236.
- 812 19. Maeder, M. L. *et al.* CRISPR RNA–guided activation of endogenous human genes. *Nat. Methods* 10, 977–979
 813 (2013).
- 814 20. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).
- 815 21. Esvelt, K. M. *et al.* Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. *Nat. Methods* 10, 1116–
 816 1121 (2013).
- 817 22. Dixon, J. R. *et al.* Topological domains in mammalian genomes identified by analysis of chromatin interactions.
- 818 Nature vol. 485 376–380 Preprint at https://doi.org/10.1038/nature11082 (2012).
- 819 23. Satterstrom, F. K. *et al.* Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional
 820 Changes in the Neurobiology of Autism. *Cell* **180**, 568–584.e23 (2020).
- 821 24. Fu, J. M. *et al.* Rare coding variation provides insight into the genetic architecture and phenotypic context of
 822 autism. *Nat. Genet.* 54, 1320–1331 (2022).
- 823 25. Zhang, Y. *et al.* Rapid single-step induction of functional neurons from human pluripotent stem cells. *Neuron* **78**,
 824 785–798 (2013).
- 825 26. Wang, C. *et al.* Scalable Production of iPSC-Derived Human Neurons to Identify Tau-Lowering Compounds by
 826 High-Content Screening. *Stem Cell Reports* 9, 1221–1233 (2017).
- 827 27. Lin, H.-C. *et al.* NGN2 induces diverse neuron types from human pluripotency. *Stem Cell Reports* 16, 2118–2127
 828 (2021).
- 829 28. Sanson, K. R. *et al.* Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. *Nat. Commun.*830 9, 5416 (2018).
- 831 29. Yao, D. *et al.* Multi-center integrated analysis of non-coding CRISPR screens. *bioRxiv* 2022.12.21.520137 (2022)
 832 doi:10.1101/2022.12.21.520137.
- 833 30. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
- 834 31. Xu, Z., Sziraki, A., Lee, J., Zhou, W. & Cao, J. PerturbSci-Kinetics: Dissecting key regulators of transcriptome
- kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. *bioRxiv* 2023.01.29.526143 (2023)

- 836 doi:10.1101/2023.01.29.526143.
- 837 32. Song, M. et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk
- 838 variants to target genes. *Nat. Genet.* **51**, 1252–1262 (2019).
- 839 33. McKenna, A. & Shendure, J. FlashFry: a fast and flexible tool for large-scale CRISPR target design. *BMC Biol.* 16,
 840 74 (2018).
- 841 34. Frankish, A. *et al.* GENCODE reference annotation for the human and mouse genomes. *Nucleic Acids Res.* 47,
 842 D766–D773 (2019).
- 843 35. Lizio, M. *et al.* Update of the FANTOM web resource: expansion to provide additional transcriptome atlases.
 844 *Nucleic Acids Res.* 47, D752–D758 (2019).
- 845 36. FANTOM Consortium and the RIKEN PMI and CLST (DGT) *et al.* A promoter-level mammalian expression atlas.
 846 *Nature* 507, 462–470 (2014).
- 847 37. Replogle, J. M. *et al.* Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted
- 848 sequencing. *Nat. Biotechnol.* **38**, 954–961 (2020).
- 38. Jerber, J., Haldane, J., Steer, J., Pearce, D. & Patel, M. Dissociation of neuronal culture to single cells for scRNAseq (10x Genomics) v1. Preprint at https://doi.org/10.17504/protocols.io.bh32j8ge.
- 851 39. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
- 40. Pagès, H. BSgenome: Software infrastructure for efficient representation of full genomes and their SNPs. *R package version*.
- 854 41. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets
 855 with the R/Bioconductor package biomaRt. *Nat. Protoc.* 4, 1184–1191 (2009).
- 42. Durinck, S. *et al.* BioMart and Bioconductor: a powerful link between biological databases and microarray data
 analysis. *Bioinformatics* 21, 3439–3440 (2005).
- 43. Hahne, F. & Ivanek, R. Visualizing Genomic Data Using Gviz and Bioconductor. *Methods in Molecular Biology*335–351 Preprint at https://doi.org/10.1007/978-1-4939-3578-9_16 (2016).
- 860 44. Rosenbloom, K. R. *et al.* ENCODE data in the UCSC Genome Browser: year 5 update. *Nucleic Acids Res.* 41,
 861 D56–63 (2013).
- 45. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
- 46. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).