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INTRODUCTION: Single-cell technologies are a
powerful means of studying metazoan devel-
opment, enabling comprehensive surveys of
cellular diversity at profiled time points and
shedding light on the dynamics of regulatory
element activity and gene expression changes
during the in vivo emergence of each cell type.
However, nearly all suchwhole-embryo atlases

of embryogenesis remain limited by sampling
density—i.e., the number of discrete timepoints
at which individual embryos are harvested and
cells or nuclei are collected. Given the rapidity
with which molecular and cellular programs
unfold, this limits the resolution at which reg-
ulatory transitions can be characterized. For
example, in the mouse, there are typically 6 to

24 hours between sampled embryonic time
points—gaps within which massive molecular
and morphological changes take place.

RATIONALE: To construct an ungapped repre-
sentation of embryogenesis in vivo, we would
ideally sample embryos continuously. Although
this isnotpractical formostmodel organisms, it is
potentially possible inDrosophilamelanogaster,
where collections of timed and yet somewhat
asynchronous embryos are easy to obtain, such
that, at least in principle, one can achieve ar-
bitrarily high temporal resolution. Drosophila
could therefore serve as a test case to develop a
framework for the inference of continuous reg-
ulatory and cellular trajectories of in vivo em-
bryogenesis. BecauseDrosophila is a preeminent
model organism that has yieldedmany advances
in the biological and biomedical sciences, obtain-
ing a single-cell atlas of Drosophila embryo-
genesis is also an important goal in itself. This
includes its embryonic development, where the
use of this model in conjunction with powerful
genetic tools has transformed our understand-
ing of themechanismsbywhich developmental
complexity is achieved, in addition to uncover-
ingmany general principles of both genetic and
epigenetic gene regulation.

RESULTS: We profiled chromatin accessibility
in almost 1 million nuclei and gene expression
in half a million nuclei from eleven overlap-
ping windows spanning the entirety of em-
bryogenesis (0 to 20 hours). To exploit the
developmental asynchronicity of embryos from
each collection window, we applied deep neu-
ral network–based predictivemodeling tomore-
precisely predict the developmental age of each
nucleus within the dataset, resulting in contin-
uous,multimodal views ofmolecular and cellu-
lar transitions in absolute time. With these
data, the dynamics of enhancer usage and gene
expression can be explored within and across
lineages at the scale of minutes, including for
precise transitions like zygotic genomeactivation.

CONCLUSION: ThisDrosophila embryonic atlas
broadly informs the orchestration of cellular
states during the most dynamic stages in the
life cycle of metazoan organisms. The in-
clusion of predicted nuclear ages will fa-
cilitate the exploration of the precise time
points at which genes become active in dis-
tinct tissues as well as how chromatin is
remodeled across time.▪
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Characterizing the continuum of Drosophila embryogenesis. We collected staged Drosophila embryos from
overlapping time windows across the first 20 hours of embryogenesis. Then we extracted nuclei and performed
single-cell RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-
seq) profiling using combinatorial indexing (sci-RNA-seq and sci-ATAC-seq) to comprehensively map expressed
genes and putatively active regulatory elements. We applied machine learning to infer a continuum of nuclear ages
that is synchronized across unfolding lineages in absolute time. The continuous nuclear age predictions were used
to annotate and then link cellular states at nonoverlapping 2-hour intervals, as well as to explore transcriptional
regulatory dynamics across major cell lineages of embryonic development at fine-scale temporal resolution.
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Drosophila melanogaster is a powerful, long-standing model for metazoan development and gene
regulation. We profiled chromatin accessibility in almost 1 million and gene expression in half a million
nuclei from overlapping windows spanning the entirety of embryogenesis. Leveraging developmental
asynchronicity within embryo collections, we applied deep neural networks to infer the age of each
nucleus, resulting in continuous, multimodal views of molecular and cellular transitions in absolute
time. We identify cell lineages; infer their developmental relationships; and link dynamic changes in
enhancer usage, transcription factor (TF) expression, and the accessibility of TFs’ cognate motifs. With
these data, the dynamics of enhancer usage and gene expression can be explored within and across
lineages at the scale of minutes, including for precise transitions like zygotic genome activation.

S
ingle-cell technologies are a powerful
means of studying metazoan develop-
ment, shedding light on the emergence
of cellular diversity and the dynamics of
gene regulation. However, nearly all such

atlases of embryogenesis are limited in terms of
the number of discrete time points and cells
sampled per time point. Given the rapiditywith
which molecular and cellular programs unfold,
this limits the resolution at which regulatory
transitions can be characterized.
Tomore completely represent development,

embryos would ideally be sampled continu-
ously. Although impractical for most model
organisms, it is feasible inDrosophila, where
collections of timed and yet somewhat asyn-
chronous embryos are easy to obtain, such
that, in principle, one can achieve arbitrarily
high temporal resolution. This sharply con-
trasts with mice, for which there are typically
6 to 24 hours between sampled time points,
gaps withinwhichmassivemolecular andmor-
phological changes take place (1–4). Although

sampling gaps can be computationally filled
through the continuum of cell states repre-
sented in single embryos (4, 5), the asynchro-
nous ages ofDrosophila embryos within staged
collections present an opportunity for more
bona fide continuity—e.g., with seconds or
minutes separating the developmental ages of
consecutive embryos rather than hours or days.
Moreover, becauseDrosophilamelanogaster is
a preeminentmodel organism that has yielded
many discoveries and general principles of
metazoan development and gene regulation,
obtaining a single-cell atlas of Drosophila em-
bryogenesis is an important goal in itself.

Results

We set out to measure chromatin accessibility
and gene expression from individual nuclei
spanning a continuum of D. melanogaster
embryogenesis. Staged embryos were collected
in 11 overlapping time windows, collectively 0
to 20 hours, covering the entirety of embryo-
genesis at 25°C. Overlapping 2-hour collections
were used to capture the rapid transitions
during early stages, followed by overlapping
4-hour collections from3hours onward (Fig. 1A).
From each collection, samples were split and
separately processed for assay for transposase-
accessible chromatin using sequencing (ATAC-
seq) or RNA sequencing (RNA-seq). Although
we hereafter refer to cells, all data were gen-
erated from nuclei. Single-cell profiling was
conducted using three-level combinatorial in-
dexing (sci-ATAC-seq3 and sci-RNA-seq3) with
minor modifications (1, 6).
Sci-ATAC-seq3 and sci-RNA-seq3 libraries

were sequenced to generate 30 billion and
6.8 billion raw reads, respectively (fig. S1).
After deduplication and application of quality
filters, we obtained chromatin accessibility pro-

files for 976,460 cells [single-cell ATAC (scATAC):
median 5206 nonduplicate reads per cell] and
gene expression profiles for 547,805 cells
[single-cell RNA (scRNA): median 399 unique
molecular identifiers (UMIs) and 274 genes
detected per cell]. Although our scRNA data
have fewer UMIs per nucleus than previously
obtained from Drosophila embryos (7), we pro-
filed many more nuclei spanning many more
stages of embryogenesis and complemented
thiswith scATACwith ahighnumber of unique
reads per nucleus. Given the small size of the
Drosophila embryo, such deep “shotgun cel-
lular coverage” should effectively sample all
tissue types during embryogenesis. The data
did not appear to be confounded by batch ef-
fects (fig. S2, A to G).
For both data modalities, integrating and

visualizing single-cell profiles across all time
points resulted in branching structures going
from early to late stages, consistent with in-
creasing complexity (Fig. 1, B and C). From the
scATAC data, we identified 110,185 regions ex-
hibiting accessibility at some point during
embryogenesis. Collectively, these candidate
regulatory elements cover 30.4 Mb (22%) of
Drosophila euchromatin (dm6) and include
85% of known embryonic enhancers, based on
overlap with nearly 5000 curated enhancers
confirmed in transgenic embryos (Fig. 1D)
(8–10). This, together with the high coverage
of both bulk deoxyribonuclease (DNase) I
hypersensitive site (DHS) peaks (87%) and
scATAC-derived peaks (98%) from2 to 12 hours
(11, 12), supports the comprehensiveness of
this compendium. Similar results were ob-
tained computing overlaps on a per-base rather
than per-element basis (fig. S2H). We addi-
tionally uncovered more than 40,000 distal
accessible regions not identified in these pre-
vious studies (Fig. 1D) that are enriched for
enhancer-associated histone marks, suggesting
that they are previously uncharacterized de-
velopmental enhancers (fig. S2I). The compen-
dium also recovered 94% of 8008 extensively
validatedmesodermal cis-regulatorymodules (13)
and 96% of nearly 1 million chromatin immuno-
precipitation (ChIP)–defined binding sites across
233 transcription factors (TFs) (14) (fig. S2J).
In exploring these data, we identified thou-

sands of genomic regions and transcriptswhose
accessibility and expression levels, respective-
ly, were strongly correlated with the progres-
sion of developmental time (Fig. 1, E and F).
Notably, not all of these correlations were cell
type specific (fig. S3). The presence of such
time-dependent elements and transcripts sug-
gests that a dynamic process is unfolding
across development, at least some aspects of
which are cell type specific, whereas other
aspects appear general to germ layers or the
entire organism. We reasoned that we could
leverage these correlations to build a model
to predict absolute developmental age of any
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given nucleus with greater temporal resolu-
tion than our 2- to 4-hour collection windows.

Predicting the absolute age of individual nuclei

In these data, the precise developmental age
of each sampled nucleus is unknown—only
the 2- to 4-hour collection window from which

it derived. To estimate the age of each nu-
cleus with greater precision, we fit a series of
models using either the scATAC or scRNA
data as input and predicting the center hour
of the collection window from which any given
nucleus was obtained (Fig. 2A). Specifically,
we split a subset of each dataset, evenly sub-

sampled with respect to time, into 11 partitions,
10 of which were used as training data to fit
either a lasso linear (LL) model or a neural
network (NN)–based model with 10-fold cross-
validation across various test parameters.
After selecting the highest performing param-
eterization, the NN-based models markedly
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Fig. 1. Single-cell profiling of chromatin accessibility and gene expression
throughout Drosophila embryogenesis. (A) Eleven overlapping collection windows
that collectively cover embryogenesis. (B) UMAP visualization of cell-x-peak matrix
of evenly time-subsampled sci-ATAC-seq nuclei that passed QC. (C) Same as
(B), but for sci-RNA-seq. (D) Heatmap showing proportion of our scATAC peaks
overlapping ~5000 curated enhancers (8–10), bulk DHS peaks from 2 to 12 hours

(11), scATAC peaks from 2 to 12 hours (12), or annotated TSSs (49). (E) Chromatin
accessibility, normalized by counts per million reads, across representative regions
exhibiting time dependence across 11 collection windows. (F) Gene expression of
representative genes exhibiting time dependence across 11 collection windows. Read
counts were normalized, multiplied by a scale-factor, log-transformed after the
addition of a pseudocount, and averaged across all cells within each window.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of W
ashington on A

ugust 04, 2022



outperformed LL models for both data types
in predicting the developmental age of nuclei
within the held-out 11th partition [for NN ver-
sus LL, mean squared error (MSE): ATAC =
5.26 versus 8.8, RNA = 2.54 versus 4.72; pro-
portion correct: ATAC = 0.67 versus 0.53,
RNA = 0.87 versus 0.65]. We therefore moved
forward with NN-based nuclear age predic-
tions for the remainder of this study (Fig. 2B
and fig. S4). Notably, the scRNA-based model

was slightly more accurate than the scATAC-
based model, likely leading to slightly older
age predictions during early collection win-
dows and slightly younger age predictions
during late collection windows for scATAC
ages compared with scRNA ages.
To further assess accuracy, we applied the

scRNA-derivedmodels to a bulkRNA-seq time
course of staged embryos in 2-hour intervals
(15) and found high concordance between pre-

dicted and actual developmental age (Fig. 2C).
The scATAC-derived models were similarly
able to order a time course of bulk DNase se-
quencing (DNase-seq) data from either whole
embryos or specific fluorescence-activated cell
sorting (FACS)–purified lineages (11) (Fig. 2D).
To assess predicted ages at much finer time
scales (minutes rather than hours), we focused
on genes whose expression is activated at spe-
cific nuclear cycles during zygotic genome
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Fig. 2. Inferring developmental age from cellular state. (A) We fit a NN-based
model that uses either gene expression or chromatin accessibility to predict the
center hour of the time window from which each nucleus was sampled. The
inferred nuclear ages make up a continuum. (B) NN model–predicted
developmental ages (y axis) of test set nuclei, equally sampled from discrete
time windows (x axis) and not included in model training. (C) NN model–
predicted developmental ages (y axis) of bulk RNA-seq samples (15) collected
from 2-hour windows (x axis). (D) NN model–predicted developmental ages
(y axis) of bulk DNase-seq samples from either whole-embryo or purified tissues

collected from 2-hour windows (x axis). (E) Expression of zygotic (left), maternal
(top right), or silent (bottom right) genes in nuclei from predicted age windows
in 5-min increments across 0 to 2 hours of development. (F) Accessibility of
most variable scATAC peaks from predicted age windows in 1-min increments
across 0 to 2 hours of development. Labels indicate regions illustrated in (G).
(G) Examples of cis-regulatory regions known to exhibit dynamic accessibility in
early embryos (17). (H and I) Examples of time-associated genes, with
expression values averaged across all nuclei from indicated collection windows
(H) or from predicted age windows in 10-min increments (I).
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activation (ZGA) (16). Genes turning onduring
ZGA were dynamically up-regulated in asso-
ciation with predicted nuclear ages (scRNA-
based; 5-min increments), whereas maternal
and silent genes were not (Fig. 2E). Early dy-
namically accessible enhancers and promoters
could similarly be predicted (scATAC-based;
1-min increments) (Fig. 2F), opening in the
same order as previously observed by bulk
ATAC-seq of hand-picked embryos at 3-min
intervals (Fig. 2G) (17). To further illustrate the
value of this framework, we note that pseudo-
bulk profiles corresponding to collection win-
dows lead to piecewise expression dynamics
(Fig. 2H). By contrast, pseudobulk profiles
based on model-predicted ages yield more
continuous dynamics (Fig. 2I).
Although there are similarities between the

goal of our approach and the concept of pseu-
dotime (18), a key advantage of inferred age
is that, both in training and prediction, cells
are anchored to absolute time, which enables
more interpretable ordering of cellular pro-
cesses as well as their synchronization across
lineages. One concern is that contamination
with embryos whose developmental age falls
outside the collection window will have ex-
aggerated confounding effects on early time
points because older embryos contain vastly
more nuclei. Consistent with this, our model
predicted that 2.8% of the ~80,000 scRNA-
profiled cells from 0 to 2 hours were at least
4 hours in developmental age. These older
cells represent the majority of a discrete clus-
ter in uniform manifold approximation and
projection (UMAP) space (fig. S5A). Similar
contamination is also observed with scATAC
profiles from this early time window (12.7% of
~20,000 cells; fig. S5, B to D). Clustering and
visualizing only the cells inferred to be 0 to
2 hours in age eliminates this developmentally
advanced cluster (fig. S5E).

Annotation and inference of diversifying
developmental trajectories

To systematically track the emergence and di-
versification of developmental trajectories, we
used inferred ages to separately process and
cluster cells from a series of 2-hour nonover-
lapping time windows. Clusters were then
annotated by leveraging stage-matched infor-
mation on gene expression from thousands of
in situ hybridizations spanning embryogenesis
as well as extensive enhancer activity data
(12, 19, 20) (Fig. 3, A and B).
Notably, the last few hours of the time

course had reduced numbers of inferred cells
(e.g., after 18 hours, 61% fewer than would be
expected under uniform sampling) and fewer
identified clusters (fig. S6A). We suspect that
this may be the result of edge effects of the
model because we also observe reduced num-
bers of inferred cells for the first several hours,
although there they have less effect because

the data from early time points lack extensive
structure. For this reason, we excluded cells
with an inferred age of >18 hours from this set
of analyses.
Here, we use cell state to mean an anno-

tated cluster at a given timewindow. Altogeth-
er, we identified 171 cell states in sci-ATAC-seq
data and 268 in sci-RNA-seq data across the
nine time windows, each of which received
one of 38 cell type annotations for ATAC or
one of 54 cell type annotations for RNA (tables
S1 and S2 and Fig. 3, A and B). Across time
windows,we identified an average of 109marker
genes and 2469 marker accessible regions per
cluster (tables S3 and S4).
The early stages of Drosophila embryogen-

esis, represented by our 0- to 2-hour time
window, include 13 rapid nuclear divisions
within a syncytium that generates 6000 nuclei,
regulated by maternal genes. At ~2 hours and
20 min after fertilization, cellularization occurs
and the zygotic genome is activated (21), fol-
lowed by gastrulation to generate the three
germ layers. Our single-cell data recapitulate
these events, where the earliest timewindow
(0 to 2 hours) has two large clusters annotated
as maternal or unknown. At 2 to 4 hours, the
maternal cluster is no longer present, and in-
stead, pole cells and anlage clusters appear. A
notable expansion in the diversity of cell types
follows across 6 to 10 hours, matching expec-
tations for when the major lineages in each
germ layer are specified (Fig. 3, A and B).
To follow the emergence and diversification

of cell lineages, we systematically linked cell
clusters across developmental time, applying
similar methods as in earlier studies (3, 22) to
coembeddings of cells from adjacent non-
overlapping, inferred time windows (fig. S6, B
and C). For cells of each state derived from the
“child” time window, we calculated the me-
dian proportion of nearest neighbors from
the “parent” window that were derived from
each potential parental cell state and treated
this as the weight of the corresponding edge.
The maximum edge weights >0.2 were re-
tained, resulting in acyclic, directed graphs,
independently generated from scRNA and
scATAC data (Fig. 3, C and D). Although these
procedures were generated independently of
our cell cluster annotations at each time win-
dow, they overwhelmingly yielded internally
consistent results. For example, muscle clus-
ters in one time window connect to muscle
clusters in the next time window, and the
same is true for other major lineages (e.g.,
central nervous system, peripheral nervous sys-
tem, etc.) as embryogenesis proceeds. We note
that some paths seem to terminate prema-
turely, potentially because of drastic increases
in cell number in later embryogenesis, which
were not matched by corresponding increases
in our sampling, or because of unknown tech-
nical or biological factors. More generally, be-

cause these are inferences based on cellular
state rather than lineage tracing, they may be
prone to certain kinds of error (3).
To illustrate the potential of these data to

facilitate exploration of specific lineages at
finer resolution, we reanalyzed 59,012 cells
annotated as neuroectoderm using scRNA
data from 6 to 18 hours (Fig. 3E and fig. S7A).
This revealed 20 subclusters, including a large
group of early cells corresponding to the brain
primordium and neural progenitors that ex-
press regulators of neurogenesis, such asNotch
(N) and Delta (Dl), and neuroblast temporal
TFs, such as miranda (mira) and castor (cas).
Two additional neural progenitor clusters cor-
respond to sensory progenitors, whereas im-
mature neurons express low levels of both
neural progenitor and pan-synaptic genes, in-
cluding cacophony (cac) and synaptotagmin
1 (syt1). Mature neurons are marked by higher
levels of pan- and subtype-specific synaptic
genes coupled with low or no expression of
earlier developmental genes. Finally, midline
cells, consisting of both neurons and glia clus-
ter together, become evident at 6 to 8 hours;
using the midline TF single minded (sim) and
glial immunoglobulin family member wrap-
per as markers, we can follow them forward
in time as they mature (fig. S7B). We can also
follow the maturation of sensory neural pro-
genitors, marked by shaven (sv), from 6 to
16 hours (fig. S7B).
To further explore neuronal diversity, we

reclustered 6703 mature neurons, revealing
11 neuronal subtypes, which we manually
curated (Fig. 3F). Among these, we identify
four clearly separable sensory cell clusters.
There are two types of Drosophila sensory
neurons based on dendritic morphology:
type I sensilla, which include both external
sensory (ES) neurons and internal chordo-
tonal (Ch) neurons, and type II multidendritic
(MD) neurons. We can clearly distinguish MD
neurons on the basis of expression of genes,
such as dendritic arbor reduction 1 (dar1),
which promotes their characteristic branch-
ing dendrites, and the pseudouridine synthase
RluA-1, which was recently identified as a
marker of MD neurons (23) (Fig. 3, F and G).
Consistent with their nociceptive role, this
cluster also specifically expresses the mechan-
ical nociception degenerin/epithelial sodium
channel subunits pickpocket (ppk) and ppk26.
Mechanosensory ES neurons are specified by
the TF hamlet (ham), which is specifically ex-
pressed in the middle sensory cluster (Fig. 3, F
and G) (24). The adjacent cluster, likely Ch
sensory neurons, is identified by expression
of the mechanosensitive nonselective cation
channel subunit nomechanoreceptor potential
C (nompC) as well as fate-determinantRfx and
a number of as-yet uncharacterized genes spe-
cific to this cluster (25, 26) (Fig. 3, F and G).
The final sensory cluster likely corresponds to
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Ch glial-like support cells based on the expres-
sion of glial markers, including moody, and
Cbl-associated protein (CAP) and nompA, which
promote the development and function of Ch
support cells, respectively (Fig. 3, F and G). On
the basis of vesicular neurotransmitter trans-
porter expression, we also identify two clusters
of central cholinergic neurons, a glutamatergic
cluster that likely includesmotor neurons, and

monoaminergic neurons (Fig. 3, F and G). Fi-
nally, peptidergic neurons cluster separately
and were identified on the basis of the expres-
sion of neuropeptides [ion transport peptide
(ITP)], enzymes involved in their synthesis
[amontillado (amon)], and receptors [myosup-
pressin receptor 1 (MsR1)] (Fig. 3, F and G).
We validated the expression of uncharac-

terized long noncodingRNA (lncRNA)CR31451

as enriched in mature neurons as well as two
genes, complexin (cpx) and CG4328, identified
in our analysis as enriched in the monoami-
nergic cluster, which includesmidline neurons
(Fig. 3H). This neuronal subtype enrichment is
unexpected for cpx, which encodes a presynap-
tic regulator of synaptic vesicle release, andmay
point to additional requirements for Cpx in
midlinemonoaminergic neurons. In the course
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Fig. 3. Annotation of diversify-
ing developmental trajectories.
(A) UMAP visualization of non-
overlapping, inferred 2-hour time
windows for scRNA clusters
colored by cell state annotation.
Dashed boxes highlight neuro-
ectodermal clusters. (B) Same as
(A), but for scATAC data. PNS,
peripheral nervous system; CNS,
central nervous system. (C)
ScRNA-based acyclic directed
graph representation of clusters
linked through nonoverlapping
time windows. (D) Same as (C),
but from scATAC data. (E) UMAP
of scRNA data for ~60,000
annotated neuroectodermal
cells—i.e., cell states highlighted
in (A) with dashed boxes, colored
by cluster. (F) UMAP of ~6000
mature neurons, colored by
cluster. The chordotonal glia
cluster includes Ch and ES organ
glial-like support cells. (G) Dot
plot showing marker gene
expression for annotated clusters
in (F). (H) In situ hybridization
of stage 16 embryos, showing the
expression of lncRNA CR31451,
cpx, and CG4328 in the nervous
system. A tissue marker (elav) is
provided in the top panel. A
lateral and ventral embryo view is
shown for each gene.
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of exploring these fine neuronal subtypes, we
also made an unexpected finding regarding
elav, a classic marker gene for neurons. Spe-
cifically,wenoticed lower-level expression of elav
in clusters annotated as visceral muscle. Per-
forming double fluorescent in situ hybridiza-
tionwith a visceralmuscle–specificmarker gene
(biniou) confirmed this unexpected finding (fig.
S7C) and raises the possibility of a potential pre-
viously unknown role of this well-studied gene.
This deeper exploration of the neuroecto-

derm, validating and extending years of re-
search frommany groups, illustrates the depth
of information that can be obtained from
these data. We additionally performed a more
detailed annotation of nonmyogenic meso-
derm (supplementary note 1). A full explora-
tion of all lineages represented in these data
will require a community-wide effort by tis-
sue experts (as done in this study for neuronal
diversity).
In addition to delineating developmental

trajectories, these data can also capture spatial
differences arising during developmental pat-
terning. Previous bulk ATAC-seq on embryo
halves has shown variability in the accessibil-
ity of enhancers along the anterior-posterior
(A-P) axis of the blastoderm embryo (27). Using
label transfer to map anterior or posterior
identities from a previous blastoderm dataset
(12) onto our 2- to 4-hour data, we computed
a positional accessibility skew score for vali-
dated enhancers with strict A-P activity (27).
This indicates that accessibility of most A-P
enhancers is skewed in the expected anterior
or posterior cell group (fig. S7D), recapitulat-
ing the bulk data (27). Notably, we also iden-
tify differences among enhancers of the same
gene. For example, in the eve locus, the stripe
1 enhancer has a much stronger skew for
anterior accessibility compared with stripe
2, as has also been previously reported (27).
Our single-cell data thus capture the biological
variability in enhancer accessibility along the
A-P axis, extending previous observations. We
similarly could transfer labels from our sci-
RNA-seq clusters to spatial coordinates from a
spatial enhanced resolution omics sequencing
(Stereo-seq)–based spatial study of Drosophila
embryos at 14 to 16 hours and 16 to 18 hours of
development (28). Using the assigned annota-
tions of tissues from the spatial study, we
observe a correspondence with our cluster
annotations, which again suggests the spatial-
relevant variability present in these data
(fig. S7E).

Tracing dynamic gene modules
across development

To further leverage continuous views of un-
folding trajectories, we next explored the gene
regulatorymodules active in germ layer–specific
development.We focused on themesodermand
its derivatives as a complex, well-characterized

system that we and others have studied pre-
viously (11, 13, 29, 30). For this, we selected all
cells corresponding to mesoderm-derived cell
states, collectively 51,338 (scRNA) and 200,907
(scATAC) profiles across 4 to 20 hours and 2 to
20 hours of inferred developmental age, re-
spectively (Fig. 4, A and B).
Focusing first on RNA, we selected the top

2000 most variable genes. After normalizing
expression values to be comparable across
time, we used dynamic time warp clustering
to group genes into four clusters with distinct
temporal regulation (Fig. 4C, fig. S8A, and
table S6). These clusters define broad succes-
sivewaves of gene expression duringmesoderm
development (Fig. 4D) and notably exhibit
similarly ordered waves of chromatin acces-
sibility (fig. S8, B and D, and supplementary
note 2). Gene pathway enrichment suggests
different functional roles for each cluster (fig.
S8C). Cluster 1 genes (n = 571) are highly ex-
pressed from the beginning of mesoderm de-
velopment (directly after gastrulation; 4 to
9 hours); are enriched for TFs (P = 1.4 × 10−6);
and likely represent a mixture of genes in-
volved in progenitor cells, mesoderm devel-
opment, and transcriptional activation (Fig. 4D
and fig. S8C). Cluster 2 genes (n = 433) peak at
~9 to 11 hours, during the subdivision of the
mesoderm into differentmuscle primordia and
their subsequent specification. This cluster is
enriched for genes involved in mesoderm de-
velopment, including myoblast fusion and
myotube differentiation, while losing enrich-
ment for stem cell and self-renewal terms (Fig.
4D and fig. S8C). By contrast, cluster 3 genes
(n = 365) initiate expression at ~10 hours and
steadily increase to the end of embryogenesis,
whereas cluster 4 genes (n = 631) only switch
on at ~15 hours, during muscle terminal dif-
ferentiation. The last cluster lacks enrichment
for TFs and rather includes genes involved in
myofibril assembly and muscle assembly and
maintenance as well as essential contractile
proteins for differentiatedmuscle (Fig. 4D and
fig. S8C). We validated the spatiotemporal ex-
pression of five poorly characterized genes by
in situ hybridization, confirming that they are
expressed in the mesoderm or muscle at the
inferred time window (Fig. 4E).
The temporal and cell type–specific nature

of these expression signatures for both the
downstream effector molecules and their up-
stream regulators should provide the resolu-
tion to order genes into putative regulatory
hierarchies. For example, several genes with
essential roles in muscle differentiation, such
as myosin heavy chain (Mhc), are present in
clusters 3 and 4. Mhc protein plays a critical
role in providingmuscle-contractile force. Our
scRNA data show increasing Mhc expression
along the muscle lineages in cells with later
embryonic ages (Fig. 4, A and F), matching the
expressionpattern ofMhc. Concomitantly, there

is a gradual increase in open chromatin at
characterized Mhc enhancers at later stages
along multiple muscle trajectories (Fig. 4G).
Before the expression of Mhc and other

muscle differentiation genes, we observe tran-
sient expression of mesoderm-associated TFs
(cluster 2; Fig. 4C). One example is Kahuli
(Kah), a TF associated with muscle develop-
ment, which has peak expression at 10 hours
of embryogenesis (cluster 2; Fig. 4, C, D, F,
and G). To investigate the relationship be-
tween open chromatin and gene expression,
we computed gene activity scores, defined as
the sum of sci-ATAC-seq reads in the gene
body and the 2 kb flanking the transcription
start site (TSS). The gene activity scores for
both Mhc and Kah recapitulate their sequen-
tial temporal patterns of expression, with Kah’s
activity signature appearing earlier along the
mesodermal trajectories compared with that
of Mhc (Fig. 4, F and G). To determine the
extent to which we could map the exact order-
ing of accessibility and expression changes, we
overlaid the scaled expression values and gene
activity scores averaged across bins with equal
numbers of cells (Fig. 4G). Notably for Kah,
gene expression temporally follows the trajec-
tory of the corresponding gene activity score
based on open chromatin, suggesting an order-
ing where first the gene body becomes acces-
sible followed by accumulating levels of the
corresponding transcript; however, this was
not the case forMhc, for which expression and
accessibility increased in tandem (Fig. 4G).
Kah binds to several characterizedMhc en-
hancers near the gene’s promoter, as observed
in bulk ChIP sequencing (ChIP-seq) data (14),
which suggests a regulatory link between Kah
and Mhc expression (Fig. 4H).
To extend this analysis more globally, we

searched for TF motifs enriched in putative
enhancers (mesoderm-specific scATAC peaks
1 to 10 kb upstream of the TSS) of genes be-
longing to each of the four scRNAmesoderm
expression clusters. This identified 458 TF
motif–to-cluster enrichments (q < 1 × 10−3 and
presence in >1% of target peaks; table S7) cor-
responding with 152 unique TFs. Of these, 31
are TFswhose expression changes alongmeso-
derm differentiation and are thus included in
the expression-based clustering (table S7). These
31 include many TFs essential for mesoderm
development, including a number of direct
target genes of themaster regulator Twist (the
functional ortholog of MyoD) at the beginning
of mesoderm development (e.g., hb, en, Ubx,
and pb), and concordantly expressed in the
first temporal cluster. These factors havemany
functions, including setting up the segmen-
tation of the mesoderm, regulating the ex-
pression of somatic muscle identity genes,
establishing midgut constrictions in the vis-
ceral mesoderm, and heart patterning. Other
examples from the second and third temporal
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clusters are genes required for cell fate spe-
cification of somatic muscle founder cells (e.g.,
Six4 and ap) and heart development (e.g., tup
and Lim3).
We note that this approach may miss the

contribution of important TFs that were not
variably expressed in mesoderm. In particular,
if a TF is variably expressed and has corre-
sponding variability in motif activity, this TF
is likely active. However, this does not imply
that all expressed TFs are active (e.g., there
may be coactivators or posttranslational mod-

ifications that are required). This caveat not-
withstanding, these analyses highlight the po-
tential for further discovery of coregulated
gene modules related to distinct germ layers
or cell types.

Nominating stage– and cell type–specific
TF regulators

We next investigated whether we could lever-
age the diversity of cell states across embryogen-
esis to infer which TFs drive specific programs
of cell type differentiation. For this, we used all

scATAC clusters at all time points (in contrast
to the scRNA-focused cluster analysis above)
and searched for differential enrichment of TF
position weight matrices (PWMs) within each
cluster’s open chromatin regions.
We first characterized enrichments across

clusters from the 10- to 12-hour time window
based on predicted time (Fig. 5A). Encourag-
ingly, hierarchical clustering of the enrichment
profiles of all associated PWMs grouped each
cluster roughly by germ layer (this was also
observed in other timewindows; fig. S9A). The
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Fig. 4. Dynamic regulation of mesoderm-specific gene modules. (A) UMAP of
scRNA (left) or scATAC (right) data for all mesodermal cells, colored by inferred
developmental age. (B) Same as (A), but colored as reprocessed leiden-based
clusters. (C) Normalized expression of mesoderm genes across inferred develop-
mental time. (D) Average expression of the gene modules across inferred time.
(E) In situ hybridization experiments validating temporal expression of selected genes
with predicted expression in mesoderm and muscle (asterisks indicate see
supplementary note 3). (F) Same as (A), but expression of Kah (cyan) and Mhc

(purple) is overlaid. Points from cells that express both Kah and Mhc are colored
dark blue. (G) Comparison of gene activity score (solid line) and gene expression
(dashed line) over the continuum of inferred developmental age for Kah (cluster 2) and
Mhc (cluster 3) in mesoderm-annotated cells. Gene activity scores and expression
were binned into 100 equal partitions by inferred age, averaged, and scaled to 0 to
1 with min-max values. (H) Chromatin accessibility profile surrounding Mhc for
pseudobulk mesoderm cells from 6 to 16 hours inferred time in 2-hour increments,
along with Kah ChIP-seq generated from 0- to 16-hour whole embryos (14).
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nonmyogenic mesoderm (fat body) and myo-
genic mesoderm (somatic muscle) cluster to-
gether (Fig. 5A). Open chromatin regions in
the myogenic clusters are enriched in motifs
for many TFs known to play a role in muscle

development, including Mef2 and Fork head
(Fkh) TFs. The myogenic clusters also appear
close to two neuronal clusters (Fig. 5A), which
is driven by shared motif enrichment with
neuroectoderm and glial cells, particularly

many C2H2 zinc finger TFs, including Btd,
CG7368, Crol, Sr, and Dar1. Many of these
factors have known roles in neuronal devel-
opment (e.g., Dar1), whereas Stripe (Sr) is es-
sential for muscle tendon cell fate and muscle

Calderon et al., Science 377, eabn5800 (2022) 5 August 2022 8 of 12

Fig. 5. Integration of scRNA and scATAC data to identify TFs with potential
regulatory roles across differentiating tissues and developmental time.
(A) Heatmap with averaged chromatin accessibility differences associated with
the 50 most variable TF-specific motifs from all cells in annotated ATAC-seq
clusters from 10 to 12 hours. Arrows indicate TFs discussed in the main text.
(B) Correlation between expression and motif-associated accessibility grouped
by expression activation- or repression-associated GO categories. TFs in GO
pathways for gene activation are linked to increasing chromatin accessibility.
(C) Comparison of gene expression (y axis) and motif-associated chromatin
accessibility (x axis) across NNLS-linked clusters for the TFs Sage (left), GATAe
(middle), and Awh (right). Each TF’s corresponding PWM is inset in each plot,
with the size of each base scaled by information content. (D) Heatmaps of

estimated effects of gene expression at predicting motif-associated chromatin
accessibility changes through time in different germ layers. Displayed TFs
had three or more consecutive time windows with a significant (P < 1 × 10−3)
and sign-consistent effect. Arrows indicate TFs discussed in the main text.
(E) Heatmap of expression at Zelda-responsive genes (right) and aggregated
chromatin accessibility (left) at their Zelda-bound cis-regulatory regions
(38, 39). Values were averaged in 1-min windows over 0 to 3 hours of
development. The red and blue bars to the left indicate two temporal clusters
of expression of Zelda-responsive genes. (F) Smoothed average expression
and accessibility for the two Zelda temporal clusters from (E). (G) Proportion of
accessible regions from (E) that are bound by Zelda in clusters 1 and 2 in
ChIP-seq data (39) from different nuclear cycles (NCs).
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attachment in the epidermis at late stages of
embryogenesis (31).
Because members of the same family of TFs

typically recognize similar motif sequences
(e.g., GATAe, GATAd, and pnr), it is often diffi-
cult from motif analysis alone to pinpoint the
responsible TF. To address this, we leveraged
our scRNA data to identify the most likely
active TF on the basis of its expression within
the clusters among all factors that share the
same motif binding pattern. First, we used a
regression-based framework to integrate the
scATAC and scRNA datasets and identify links
between the different cell clusters (1, 6). Spe-
cifically, we adopted a nonnegative least square
(NNLS) matrix factorization approach that
decomposes expression data as a mixture of
components derived from proximal gene ac-
tivity scores generated from the scATAC data.
Despite possible temporal differences between
accessibility and expression, NNLS identifies
stronger links between clusters from the same
2-hour window compared with those from ad-
jacent 2-hour windows (fig. S9B). We also in-
ferred NNLS links in the opposite direction by
decomposing proximal gene activity scores by
gene expression associated with scRNA clus-
ters. For each cluster of a given data type, the
result of NNLS factorization is a mixture pro-
portion of clusters from the other data type,
where a higher value represents a stronger as-
sociation between the scRNA and scATAC
cluster (fig. S9, C to F, and table S8). This factor
decomposition approach resulted in a strong
linkage (NNLS-mixture coefficient of >0.1) of
120 cell state clusters present in the same in-
ferred time windows, with most of the strongly
linked clusters being from4 to 6 hours onward.
Upon manual inspection, many linked scATAC
and scRNA clusters, which had been indepen-
dently annotated, are from matching tissues.
For example, from the 10- to 12-hour window,
the epidermis cluster (cluster 0) in scATACdata
was matched to the epidermis (cluster 3) in
scRNA data. Altogether, of 21 ATAC clusters
from the 10- to 12-hour window, 16 had a linked
RNA annotationwith aNNLS correlation value
>0.1, of which 14 were between comparable
tissue annotations.
These integrated scRNA and scATAC clus-

ters, which span 0 to 18 hours of embryogen-
esis, enabled a more direct analysis of the role
of specific TFs in different cell types’ differen-
tiation. We reasoned that active TFs should be
more highly expressed in cell types for which
they have a functional role, and their associ-
ated PWM should be more enriched or de-
pleted in accessible regions when the TF is
activating or repressing expression (6). In line
with this, correlation values between motif-
associated accessibility and gene expression
were shifted toward more positive values for
TFs annotated [by gene ontology (GO)] as ac-
tivators and toward more negative values for

annotated repressors (Fig. 5B and table S9), a
trend also observed in human fetal tissues (6).
This approach of linking TFs’ cluster-specific
expression and motif enrichments allowed us
to nominate TFs as active at specific times in
specific tissues (Fig. 5C). For example, this
analysis predicts a specific role for Sage in
salivary gland development, as the salivary
gland is the only cell type exhibiting both high
expression of the sage transcript and high ac-
cessibility of the Sage-associated PWM (Fig.
5C, top). This finding matches the essential
role for sage in salivary gland development, as
determined by genetic loss-of-function analy-
sis (32). Similar predictions were made for
GATAe in the midgut at 16 to 18 hours and
Awh in the epidermis at 14 to 16 hours (Fig. 5C,
middle and bottom), matching the functional
role for both TFs in midgut endoderm (33) and
epidermis (34, 35) development, respectively.
To expand this analysis and systematically

nominate TFs that potentially drive germ layer–
specific differentiation programs, we fit a lin-
earmodel that predicts a TF’smotif-associated
chromatin changes from an estimated effect of
an interaction term that includes the expres-
sion level of the TF in a specific germ layer and
timewindow. Ourmodel’s effect estimates can
identify TFs with specific motif activity in par-
ticular germ layers and suggest time windows
from which a TF initiates its activity. For ex-
ample, the model refined the role of Sage as
becoming active in the ectoderm germ layer
specifically from 10 to 12 hours onward and
the activity of GATAe initiating in the endo-
derm from 8 to 10 hours onward (Fig. 5D, top).
Such amodel encompassing germ layers across
development timemay also identify additional
likely coactive TFs. For example, in addition to
Sage, we found Fkh to be both coexpressed
and coactive in the ectoderm—a TF reported
to act together with Sage to activate salivary
gland–specific genes (36).
This analysis also generated additional in-

teresting findings for other time points and
germ layers [e.g., Fruitless (Fru); supplemen-
tary note 4 and Fig. 5D]. Altogether, from eight
high-level germ layer–associated tissue anno-
tations and 316 TFmotifs tested, we identified
1258 significant (Benjamini-Hochberg–corrected
P < 1 × 10−3) TF-to-tissue relationships having
both associated expression and chromatin ac-
tivity at one ormore of the nine time windows
assessed. We note that in time windows with
fewer clusters, the association effect estimates
are susceptible to outliers and should be inter-
preted with caution. Notwithstanding this
caveat, these putative assignments represent an
extensive resource for future studies (table S10).
To demonstrate the potential of our approach

to discover previously unknown putative roles
for TFs, we selected four genes and validated
whether they were expressed in the linked
germ layer by fluorescent in situ hybridization.

Although these genes were inferred to have
effects in multiple germ layers, their function
in either mesoderm (CG5953 and CG11617) or
neuroectodermal tissues (Ets65A and CG12605)
was poorly characterized. We confirmed that
these factors are in fact expressed in the tissue
and time window predicted by our data (fig.
S10), suggesting potential roles for these TFs
in mesoderm and neuronal development.
To complement the NNLS, we applied a re-

cently developed tool, FigR (37), to further
facilitate gene regulatory network (GRN) re-
construction. Because multi-omic ATAC-RNA
data from the same cell are required for this
task, we first integrated our two independent
assays for all cells from 10 to 12 hours using
canonical correlation analysis (CCA), identify-
ing the most likely ATAC-RNA cell pairs using
geodesic distance–based pairing (37) within
the common CCA space. Using these pairs as
input for GRN inference with FigR, we linked
ATAC peaks to their target genes based on
peak-to-TSS accessibility correlation and then
computed TFmotif enrichments for the linked
regions,which, togetherwith theTF expression-
accessibility correlation, allowed us to define
hundreds of putative activators and repressors
at this embryonic stage (fig. S11A). Ranking
the TFs by their regulation score (fig. S11B)
nominated many activators and repressors
that we also identified in the NNLS analysis
above, including l(3)neo38,Lim3, lola, fkh, and
fru (Fig. 5D). Focusing on the targets of the
regulatory networks across all cells at 10 to
12 hours, we found a large set of genes that
appear to be extensively regulated (209 genes
with >10 linked regulatory regions) (fig. S11C).
We then used the inferred TF activities to
explore the factors acting on these genes and
their mode of regulation. For example, tup, a
TF gene required for heart development, under-
goes extensive self-regulation (highest motif-
RNA correlation) besides being positively
regulated by the pan-muscle TF Mef2 and
repressed by Run and Opa (fig. S11D). Another
top-ranking gene, chinmo, an essential neuro-
nal TF, is activated by other nervous system
TFs, such as Lim1 and Onecut, and is nega-
tively regulated by Fru (fig. S11E), which we
also identified as a neuroectoderm-specific
repressor in our NNLS-based analysis (Fig.
5D and supplementary note 4).
Finally, we sought to exploit the fine-grained

resolution of inferred nuclear ages to explore
the dynamics of an early pioneer TF, Zelda,
in regulating chromatin opening followed by
transcription during ZGA. We recovered the
expression of a set of genes that are Zelda de-
pendent during ZGA (38) and, for each gene,
aggregated accessibility at the linked Zelda-
bound regions (39) in intervals of 1 min across
0 to 3 hours of embryogenesis (Fig. 5E). Clus-
tering of gene expression identified two broad
temporal clusters—a first group of early genes
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and a second group whose expression increases
later, after ~1.5 hours of embryogenesis. Not-
ably, although accessibility at the Zelda-bound
regions linked to the early cluster seems to
mirror the temporal expression, regions linked
to the late expression gene cluster gain acces-
sibilitymuch earlier, almost as early as the first
cluster, which suggests that Zelda is opening
these regions for future activation (Fig. 5F). To
verify whether accessibility is reflective of Zelda
binding, we retrieved Zelda occupancy by nu-
clear cycle (39), which confirmed that >70% of
regions in both temporal clusters are already
occupied by Zelda at nuclear cycle 8 to 9, re-
gardless of the associated gene expression (Fig.
5G). Moreover, we found a partial Clamp TF
motif match within the second temporal clus-
ter (and no match for the first cluster of a TF
that is also expressed), which corroborates its
Zelda-paired role during ZGA (40). These re-
sults suggest that Zelda establishes chromatin
accessibility at a large set of regulatory regions
in the early embryo, independently of future
gene expression, in agreement with its well-
known role as a pioneer factor. In some cases,
Zelda possibly also functions as the activator
of gene expression (cluster 1), whereas in others
it retains a pioneering role, and the gene’s ex-
pression is induced by later TFs (cluster 2).

Discussion

This continuum of Drosophila embryogenesis
builds on our previous work generating sci-
ATAC-seq from three nonoverlapping time
windows of embryogenesis (12) and comple-
ments other studies performed on specific
tissues (30, 41–46) as well as scRNA from entire
embryos at one specific stage (7) or on dis-
sected tissues from adults (47). Despite the
growing use of single-cell assays to generate
large-scale atlases, characterizing fine-scale
dynamics of chromatin accessibility and gene
expression across developmental time remains
a challenge. The large number of cell types and
even greater number of cell states and branch
points during embryogenesis requires exten-
sive cell sampling at continuous stages to cap-
ture regulatory transitions, especially for rare
cell types. This is very difficult if not essentially
impossible to obtain in most model organisms.
In this work, sampling embryo collections

from overlapping 2- to 4-hour time windows,
coupled with NN-based inference of more pre-
cise nuclear ages, enabled continuous repre-
sentation ofDrosophila embryonic development.
Other studies have attempted a similar order-
ing of embryos by developmental time over a
2-daywindow ofmouse development (4). How-
ever, because only dozens rather than thou-
sands of mouse embryos can practically be
sampled, reliable inference at the scale of hours
or minutes is challenging. Similarly, cell age
was inferred in Caenorhabditis elegans using
an independent time series of bulk RNA-seq

from whole embryos (48). However, relying
on such whole-embryo bulk data to predict
developmental age in single cells risks inaccu-
rate aging of rare or transient cell types, es-
pecially for more complex organisms.
Computationally, ourNN-based inference of

developmental age bears some similarity to
the concept of pseudotime. As originally pro-
posed, pseudotime aims to serve as “a quantita-
tive measure of progress through a biological
process” (18). Analogously, our inferred develop-
mental age tracks the progression of nuclei
through development. However, the advantage
of pairing an experimental design including
overlapping yet tightly defined time windows
with temporal ordering is that we can anchor
inferred ages to fixed time points, which can
potentially lead to a more accurate represen-
tation of developmental age for complex cel-
lular trajectories. Put another way, inferred
ages are interpretable as units of absolute time
that are synchronized across all tissue trajec-
tories.With such a continuumof cellular states,
we can begin to infer cell type trajectories that
more closely capture the continuous processes
of cellular differentiation unfolding within a
complex, developing multicellular organism.
There remain further possible improvements

to our experimental framework. The alignment
or anchoring to real time could be refined
with sampling of more tightly staged win-
dows. Multi-omic methods for characterizing
multiple data types from the same nuclei may
facilitate a joint model that can link paired
gene expression and chromatin accessibility
(and other modalities) to developmental age
inference. There are cases where technical
features of the data can lead to increased un-
certainty of model predictions. For example,
we found that cells annotated as germ cells,
from the first collection time window, or with
low read count were associated with greater
prediction error (fig. S11F). Moving forward,
we suggest caution for interpreting findings
solely on the basis of inferred nuclear ages
from clusters with these features.
The extensive scATAC data, with deep cover-

age across almost amillion cells, likely captured
most regulatory elements active during em-
bryonic development and provides a compre-
hensive resource of potential enhancers for
almost any cell type in the embryo. By con-
trast, our scRNA data had relatively low unique
reads per cell and will likely miss some dif-
ferentially expressed genes in specific cell
types. As a result, some delicate analyses re-
main challenging. For example, we found tran-
scriptional velocity estimates to be unstable
with sparse scRNA data, although this issue
was mitigated by constructing metacells before
velocity analysis (fig. S11G), which may be use-
ful for pursuing targeted questions. In scATAC
data, we were able to distinguish XX versus
XY nuclei from the proportion of chrX-mapped

reads (fig. S11H); however, this was challenging
for the scRNA data, again as a result of data
sparsity. These shortcomings are to some degree
compensated by the large number of cells
profiled, as shown by our ability to recapit-
ulate aspects of previously documented hetero-
geneity even for highly dynamic or restricted
phenomena—e.g., ZGA (Fig. 2E).
Overall, thisDrosophila embryonic atlas pro-

vides broad insights into the orchestration of
cellular states during the most dynamic stages
in the life cycle of the organism. Our results
represent a rich resource for understanding
precise time points at which genes become
active in distinct tissues as well as how chro-
matin is remodeled across time. The anno-
tation of cell types within these data is an
ongoing process and one that is much more
challenging at early andmid-stages of embryo-
genesis as compared with late time points or
in adults with differentiated tissues. A com-
prehensive annotation of embryonic cell states
will require a collective effort fromtheDrosophila
community. To support these ongoing efforts,
we provide information on expression and
peaks from all clusters (Fig. 3, A to D) in ad-
dition to all intermediate and raw data for
further exploration. Although larval stages re-
main insufficiently profiled, we hope that these
data and methods, together with the recently
released large-scale adult atlas (47), bring us
closer to the community-wide goal of a multi-
modalDrosophila atlas spanning a continuum
from zygote to adulthood.

Materials and methods summary

A detailed version of the materials and meth-
ods is provided in the supplementary mate-
rials. In brief, D. melanogaster embryos were
acquired for each of 11 collection windows,
and then each pool of embryos was divided,
with each half being extracted and fixed for
either sci-RNA-seq3 or sci-ATAC-seq3. Librar-
ies were sequenced deeply, and the resulting
reads were mapped to dm6 and then pro-
cessed with a uniform processing pipeline
that included quality control (QC) filters for
low read depth or high proportions of reads
mapping to the mitochondria or ribosomal
genes and extensive doublet removal. Between
the two data modalities, we obtained profiles
for ~1.5 million nuclei, although unique read
depth per nucleus was considerably lower for
scRNA than scATAC data.
Using the center hour of the collection win-

dow, we used several machine learning ap-
proaches to fit amodel that could infer the age
of a nucleus with either gene expression or
chromatin accessibility information. Both LL
regression and neural networks were fitted to
the same training data, with a held-out subset
used for model validation and comparison.
Given its consistently superior performance,
we then relied on specific parameterizations of
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NNmodel–inferred ages to reposition nuclei
in time. To zoom into fine-scale time points,
we binned data by small increments to explore
the regulatory dynamics of ZGA. Then, using
2-hour adjacent windows of cells, we com-
puted clusters of similar cells and performed
extensive manual review to annotate each
cluster’s likely germ layer and cell type. We
then used an iterative approach for construct-
ing an acyclic tree of differentiation by iden-
tifying the likely precursor cluster for each
cluster in a given time window.
Neuroectoderm was iteratively analyzed for

deeper annotation of neuronal subtypes,
whereas mesoderm was picked for analyses
focused on identifying coregulated genes and
accessible regions, which were then subjected
to ontology and TF motif enrichment analysis.
To connect scATAC cell clusters with scRNA
cell clusters, we used a regression-based ap-
proach (NNLS). Such connections between
ATAC and RNA clusters enabled a series of
analyses, such as correlating expression with
motif accessibility, applying GRN analysis
pipelines, etc.
Several additional analyses were performed.

We used probabilistic label transfer to map
likely cluster annotations from these data to
spatial information from patterned DNA nano-
balls. We also found it is possible to infer
the sex of cells from the proportion of chrX-
mapped scATAC reads using a Gaussian mix-
ture model to classify cells. Although RNA
velocity was challenging to apply to sparse
scRNA data, it yielded more sensible results
when subsets of cells were first aggregated to
metacells.
The expressions of several genes were veri-

fied by fluorescent in situ hybridization: specif-
ic neuronal genes active in identified clusters,
unexpected coactivity of the elav with binou,
genes active at specific mesoderm time points,
and putative active TFswith less-characterized
roles in tissue development.
Raw data are available through the Gene

Expression Omnibus (GEO). Additional scripts
and intermediate files, including bigwigs and
a custom web app to visualize UMAPs, are
available through our data-sharing website.

REFERENCES AND NOTES

1. J. Cao et al., The single-cell transcriptional landscape of
mammalian organogenesis. Nature 566, 496–502 (2019).
doi: 10.1038/s41586-019-0969-x; pmid: 30787437

2. B. Pijuan-Sala et al., A single-cell molecular map of mouse
gastrulation and early organogenesis. Nature 566, 490–495
(2019). doi: 10.1038/s41586-019-0933-9; pmid: 30787436

3. C. Qiu et al., Systematic reconstruction of cellular trajectories
across mouse embryogenesis. Nat. Genet. 54, 328–341
(2022). doi: 10.1038/s41588-022-01018-x; pmid: 35288709

4. M. Mittnenzweig et al., A single-embryo, single-cell
time-resolved model for mouse gastrulation. Cell 184,
2825–2842.e22 (2021). doi: 10.1016/j.cell.2021.04.004;
pmid: 33932341

5. G. La Manno et al., Molecular architecture of the developing
mouse brain. Nature 596, 92–96 (2021). doi: 10.1038/
s41586-021-03775-x; pmid: 34321664

6. S. Domcke et al., A human cell atlas of fetal chromatin
accessibility. Science 370, eaba7612 (2020). doi: 10.1126/
science.aba7612; pmid: 33184180

7. N. Karaiskos et al., The Drosophila embryo at single-cell
transcriptome resolution. Science 358, 194–199 (2017).
doi: 10.1126/science.aan3235; pmid: 28860209

8. J. Rivera, S. V. E. Keränen, S. M. Gallo, M. S. Halfon,
REDfly: The transcriptional regulatory element database for
Drosophila. Nucleic Acids Res. 47, D828–D834 (2019).
doi: 10.1093/nar/gky957; pmid: 30329093

9. E. Z. Kvon et al., Genome-scale functional characterization of
Drosophila developmental enhancers in vivo. Nature 512, 91–95
(2014). doi: 10.1038/nature13395; pmid: 24896182

10. S. Bonn et al., Tissue-specific analysis of chromatin state
identifies temporal signatures of enhancer activity during
embryonic development. Nat. Genet. 44, 148–156 (2012).
doi: 10.1038/ng.1064; pmid: 22231485

11. J. P. Reddington et al., Lineage-Resolved Enhancer and
Promoter Usage during a Time Course of Embryogenesis.
Dev. Cell 55, 648–664.e9 (2020). doi: 10.1016/
j.devcel.2020.10.009; pmid: 33171098

12. D. A. Cusanovich et al., The cis-regulatory dynamics of
embryonic development at single-cell resolution. Nature
555, 538–542 (2018). doi: 10.1038/nature25981;
pmid: 29539636

13. R. P. Zinzen, C. Girardot, J. Gagneur, M. Braun, E. E. M. Furlong,
Combinatorial binding predicts spatio-temporal cis-regulatory
activity. Nature 462, 65–70 (2009). doi: 10.1038/nature08531;
pmid: 19890324

14. M. M. Kudron et al., The ModERN Resource: Genome-Wide
Binding Profiles for Hundreds of Drosophila and
Caenorhabditis elegans Transcription Factors. Genetics
208, 937–949 (2018). doi: 10.1534/genetics.117.300657;
pmid: 29284660

15. B. R. Graveley et al., The developmental transcriptome of
Drosophila melanogaster. Nature 471, 473–479 (2011).
doi: 10.1038/nature09715; pmid: 21179090

16. J. C. Kwasnieski, T. L. Orr-Weaver, D. P. Bartel, Early
genome activation in Drosophila is extensive with an initial
tendency for aborted transcripts and retained introns.
Genome Res. 29, 1188–1197 (2019). doi: 10.1101/
gr.242164.118; pmid: 31235656

17. S. A. Blythe, E. F. Wieschaus, Establishment and maintenance
of heritable chromatin structure during early Drosophila
embryogenesis. eLife 5, e20148 (2016). doi: 10.7554/
eLife.20148; pmid: 27879204

18. C. Trapnell et al., The dynamics and regulators of cell fate
decisions are revealed by pseudotemporal ordering of single
cells. Nat. Biotechnol. 32, 381–386 (2014). doi: 10.1038/
nbt.2859; pmid: 24658644

19. A. S. Hammonds et al., Spatial expression of transcription
factors in Drosophila embryonic organ development.
Genome Biol. 14, R140 (2013). doi: 10.1186/gb-2013-14-12-
r140; pmid: 24359758

20. P. Tomancak et al., Global analysis of patterns of gene
expression during Drosophila embryogenesis. Genome Biol. 8,
R145 (2007). doi: 10.1186/gb-2007-8-7-r145; pmid: 17645804

21. J. D. Laver, A. J. Marsolais, C. A. Smibert, H. D. Lipshitz, in
Current Topics in Developmental Biology, vol. 113,
H. D. Lipshitz, Ed. (Academic Press, 2015), pp. 43–84.

22. J. A. Briggs et al., The dynamics of gene expression in
vertebrate embryogenesis at single-cell resolution.
Science 360, eaar5780 (2018). doi: 10.1126/science.aar5780;
pmid: 29700227

23. W. Song, S. Ressl, W. D. Tracey, Loss of Pseudouridine
Synthases in the RluA Family Causes Hypersensitive
Nociception in Drosophila. G3 10, 4425–4438 (2020).
doi: 10.1534/g3.120.401767; pmid: 33028630

24. A. W. Moore, L. Y. Jan, Y. N. Jan, hamlet, a binary genetic
switch between single- and multiple- dendrite neuron
morphology. Science 297, 1355–1358 (2002). doi: 10.1126/
science.1072387; pmid: 12193790

25. R. Dubruille et al., Drosophila regulatory factor X is necessary
for ciliated sensory neuron differentiation. Development 129,
5487–5498 (2002). doi: 10.1242/dev.00148; pmid: 12403718

26. R. G. Walker, A. T. Willingham, C. S. Zuker, A Drosophila
mechanosensory transduction channel. Science 287,
2229–2234 (2000). doi: 10.1126/science.287.5461.2229;
pmid: 10744543

27. J. E. Haines, M. B. Eisen, Patterns of chromatin accessibility
along the anterior-posterior axis in the early Drosophila
embryo. PLOS Genet. 14, e1007367 (2018). doi: 10.1371/
journal.pgen.1007367; pmid: 29727464

28. M. Wang et al., High-resolution 3D spatiotemporal
transcriptomic maps of developing Drosophila embryos and
larvae. Dev. Cell 57, 1271–1283.e4 (2022). doi: 10.1016/
j.devcel.2022.04.006; pmid: 35512700

29. G. Junion et al., A transcription factor collective defines cardiac
cell fate and reflects lineage history. Cell 148, 473–486 (2012).
doi: 10.1016/j.cell.2012.01.030; pmid: 22304916

30. S. Secchia, M. Forneris, T. Heinen, O. Stegle, E. E. M. Furlong,
Simultaneous cellular and molecular phenotyping of embryonic
mutants using single-cell regulatory trajectories. Dev. Cell
57, 496–511.e8 (2022). doi: 10.1016/j.devcel.2022.01.016;
pmid: 35176234

31. G. Frommer, G. Vorbrüggen, G. Pasca, H. Jäckle, T. Volk,
Epidermal egr-like zinc finger protein of Drosophila participates
in myotube guidance. EMBO J. 15, 1642–1649 (1996).
doi: 10.1002/j.1460-2075.1996.tb00509.x; pmid: 8612588

32. R. M. Fox, A. Vaishnavi, R. Maruyama, D. J. Andrew, Organ-
specific gene expression: The bHLH protein Sage provides
tissue specificity to Drosophila FoxA. Development 140,
2160–2171 (2013). doi: 10.1242/dev.092924; pmid: 23578928

33. R. Reuter, The gene serpent has homeotic properties and
specifies endoderm versus ectoderm within the Drosophila gut.
Development 120, 1123–1135 (1994). doi: 10.1242/
dev.120.5.1123; pmid: 7913013

34. J. Curtiss, J. S. Heilig, Arrowhead encodes a LIM homeodomain
protein that distinguishes subsets of Drosophila imaginal cells.
Dev. Biol. 190, 129–141 (1997). doi: 10.1006/dbio.1997.8659;
pmid: 9331336

35. E. Preger-Ben Noon, F. P. Davis, D. L. Stern, Evolved
Repression Overcomes Enhancer Robustness. Dev. Cell 39,
572–584 (2016). doi: 10.1016/j.devcel.2016.10.010;
pmid: 27840106

36. M. M. Myat, D. J. Andrew, Fork head prevents apoptosis and
promotes cell shape change during formation of the Drosophila
salivary glands. Development 127, 4217–4226 (2000).
doi: 10.1242/dev.127.19.4217; pmid: 10976053

37. V. K. Kartha et al., Functional Inference of Gene Regulation
using Single-Cell Multi-Omics. bioRxiv 2021.07.28.453784
[Preprint] (2021). doi: 10.1101/2021.07.28.453784

38. S. A. Blythe, E. F. Wieschaus, Zygotic genome activation
triggers the DNA replication checkpoint at the midblastula
transition. Cell 160, 1169–1181 (2015). doi: 10.1016/
j.cell.2015.01.050; pmid: 25748651

39. M. M. Harrison, X.-Y. Li, T. Kaplan, M. R. Botchan, M. B. Eisen,
Zelda binding in the early Drosophila melanogaster embryo
marks regions subsequently activated at the maternal-to-
zygotic transition. PLOS Genet. 7, e1002266 (2011).
doi: 10.1371/journal.pgen.1002266; pmid: 22028662

40. J. Duan et al., CLAMP and Zelda function together to promote
Drosophila zygotic genome activation. eLife 10, e69937 (2021).
doi: 10.7554/eLife.69937; pmid: 34342574

41. M. N. Özel et al., Neuronal diversity and convergence in a visual
system developmental atlas. Nature 589, 88–95 (2021).
doi: 10.1038/s41586-020-2879-3; pmid: 33149298

42. J. Bageritz et al., Gene expression atlas of a developing
tissue by single cell expression correlation analysis.
Nat. Methods 16, 750–756 (2019). doi: 10.1038/s41592-019-
0492-x; pmid: 31363221

43. C. N. McLaughlin et al., Single-cell transcriptomes of
developing and adult olfactory receptor neurons in Drosophila.
eLife 10, e63856 (2021). doi: 10.7554/eLife.63856;
pmid: 33555999

44. Z. Shi et al., Single-cyst transcriptome analysis of Drosophila
male germline stem cell lineage. Development 147, dev.184259
(2020). doi: 10.1242/dev.184259; pmid: 32122991

45. N. J. Everetts, M. I. Worley, R. Yasutomi, N. Yosef,
I. K. Hariharan, Single-cell transcriptomics of the Drosophila
wing disc reveals instructive epithelium-to-myoblast
interactions. eLife 10, e61276 (2021). doi: 10.7554/eLife.61276;
pmid: 33749594

46. R.-J. Hung et al., A cell atlas of the adult Drosophila midgut.
Proc. Natl. Acad. Sci. U.S.A. 117, 1514–1523 (2020).
doi: 10.1073/pnas.1916820117; pmid: 31915294

47. H. Li et al., Fly Cell Atlas: A single-nucleus transcriptomic atlas
of the adult fruit fly. Science 375, eabk2432 (2022).
doi: 10.1126/science.abk2432; pmid: 35239393

48. J. S. Packer et al., A lineage-resolved molecular atlas
of C. elegans embryogenesis at single-cell resolution. Science
365, eaax1971 (2019). doi: 10.1126/science.aax1971;
pmid: 31488706

49. K. L. Howe et al., Ensembl 2021. Nucleic Acids Res. 49,
D884–D891 (2021). doi: 10.1093/nar/gkaa942;
pmid: 33137190

Calderon et al., Science 377, eabn5800 (2022) 5 August 2022 11 of 12

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of W
ashington on A

ugust 04, 2022

http://dx.doi.org/10.1038/s41586-019-0969-x
http://www.ncbi.nlm.nih.gov/pubmed/30787437
http://dx.doi.org/10.1038/s41586-019-0933-9
http://www.ncbi.nlm.nih.gov/pubmed/30787436
http://dx.doi.org/10.1038/s41588-022-01018-x
http://www.ncbi.nlm.nih.gov/pubmed/35288709
http://dx.doi.org/10.1016/j.cell.2021.04.004
http://www.ncbi.nlm.nih.gov/pubmed/33932341
http://dx.doi.org/10.1038/s41586-021-03775-x
http://dx.doi.org/10.1038/s41586-021-03775-x
http://www.ncbi.nlm.nih.gov/pubmed/34321664
http://dx.doi.org/10.1126/science.aba7612
http://dx.doi.org/10.1126/science.aba7612
http://www.ncbi.nlm.nih.gov/pubmed/33184180
http://dx.doi.org/10.1126/science.aan3235
http://www.ncbi.nlm.nih.gov/pubmed/28860209
http://dx.doi.org/10.1093/nar/gky957
http://www.ncbi.nlm.nih.gov/pubmed/30329093
http://dx.doi.org/10.1038/nature13395
http://www.ncbi.nlm.nih.gov/pubmed/24896182
http://dx.doi.org/10.1038/ng.1064
http://www.ncbi.nlm.nih.gov/pubmed/22231485
http://dx.doi.org/10.1016/j.devcel.2020.10.009
http://dx.doi.org/10.1016/j.devcel.2020.10.009
http://www.ncbi.nlm.nih.gov/pubmed/33171098
http://dx.doi.org/10.1038/nature25981
http://www.ncbi.nlm.nih.gov/pubmed/29539636
http://dx.doi.org/10.1038/nature08531
http://www.ncbi.nlm.nih.gov/pubmed/19890324
http://dx.doi.org/10.1534/genetics.117.300657
http://www.ncbi.nlm.nih.gov/pubmed/29284660
http://dx.doi.org/10.1038/nature09715
http://www.ncbi.nlm.nih.gov/pubmed/21179090
http://dx.doi.org/10.1101/gr.242164.118
http://dx.doi.org/10.1101/gr.242164.118
http://www.ncbi.nlm.nih.gov/pubmed/31235656
http://dx.doi.org/10.7554/eLife.20148
http://dx.doi.org/10.7554/eLife.20148
http://www.ncbi.nlm.nih.gov/pubmed/27879204
http://dx.doi.org/10.1038/nbt.2859
http://dx.doi.org/10.1038/nbt.2859
http://www.ncbi.nlm.nih.gov/pubmed/24658644
http://dx.doi.org/10.1186/gb-2013-14-12-r140
http://dx.doi.org/10.1186/gb-2013-14-12-r140
http://www.ncbi.nlm.nih.gov/pubmed/24359758
http://dx.doi.org/10.1186/gb-2007-8-7-r145
http://www.ncbi.nlm.nih.gov/pubmed/17645804
http://dx.doi.org/10.1126/science.aar5780
http://www.ncbi.nlm.nih.gov/pubmed/29700227
http://dx.doi.org/10.1534/g3.120.401767
http://www.ncbi.nlm.nih.gov/pubmed/33028630
http://dx.doi.org/10.1126/science.1072387
http://dx.doi.org/10.1126/science.1072387
http://www.ncbi.nlm.nih.gov/pubmed/12193790
http://dx.doi.org/10.1242/dev.00148
http://www.ncbi.nlm.nih.gov/pubmed/12403718
http://dx.doi.org/10.1126/science.287.5461.2229
http://www.ncbi.nlm.nih.gov/pubmed/10744543
http://dx.doi.org/10.1371/journal.pgen.1007367
http://dx.doi.org/10.1371/journal.pgen.1007367
http://www.ncbi.nlm.nih.gov/pubmed/29727464
http://dx.doi.org/10.1016/j.devcel.2022.04.006
http://dx.doi.org/10.1016/j.devcel.2022.04.006
http://www.ncbi.nlm.nih.gov/pubmed/35512700
http://dx.doi.org/10.1016/j.cell.2012.01.030
http://www.ncbi.nlm.nih.gov/pubmed/22304916
http://dx.doi.org/10.1016/j.devcel.2022.01.016
http://www.ncbi.nlm.nih.gov/pubmed/35176234
http://dx.doi.org/10.1002/j.1460-2075.1996.tb00509.x
http://www.ncbi.nlm.nih.gov/pubmed/8612588
http://dx.doi.org/10.1242/dev.092924
http://www.ncbi.nlm.nih.gov/pubmed/23578928
http://dx.doi.org/10.1242/dev.120.5.1123
http://dx.doi.org/10.1242/dev.120.5.1123
http://www.ncbi.nlm.nih.gov/pubmed/7913013
http://dx.doi.org/10.1006/dbio.1997.8659
http://www.ncbi.nlm.nih.gov/pubmed/9331336
http://dx.doi.org/10.1016/j.devcel.2016.10.010
http://www.ncbi.nlm.nih.gov/pubmed/27840106
http://dx.doi.org/10.1242/dev.127.19.4217
http://www.ncbi.nlm.nih.gov/pubmed/10976053
http://dx.doi.org/10.1101/2021.07.28.453784
http://dx.doi.org/10.1016/j.cell.2015.01.050
http://dx.doi.org/10.1016/j.cell.2015.01.050
http://www.ncbi.nlm.nih.gov/pubmed/25748651
http://dx.doi.org/10.1371/journal.pgen.1002266
http://www.ncbi.nlm.nih.gov/pubmed/22028662
http://dx.doi.org/10.7554/eLife.69937
http://www.ncbi.nlm.nih.gov/pubmed/34342574
http://dx.doi.org/10.1038/s41586-020-2879-3
http://www.ncbi.nlm.nih.gov/pubmed/33149298
http://dx.doi.org/10.1038/s41592-019-0492-x
http://dx.doi.org/10.1038/s41592-019-0492-x
http://www.ncbi.nlm.nih.gov/pubmed/31363221
http://dx.doi.org/10.7554/eLife.63856
http://www.ncbi.nlm.nih.gov/pubmed/33555999
http://dx.doi.org/10.1242/dev.184259
http://www.ncbi.nlm.nih.gov/pubmed/32122991
http://dx.doi.org/10.7554/eLife.61276
http://www.ncbi.nlm.nih.gov/pubmed/33749594
http://dx.doi.org/10.1073/pnas.1916820117
http://www.ncbi.nlm.nih.gov/pubmed/31915294
http://dx.doi.org/10.1126/science.abk2432
http://www.ncbi.nlm.nih.gov/pubmed/35239393
http://dx.doi.org/10.1126/science.aax1971
http://www.ncbi.nlm.nih.gov/pubmed/31488706
http://dx.doi.org/10.1093/nar/gkaa942
http://www.ncbi.nlm.nih.gov/pubmed/33137190


ACKNOWLEDGMENTS
We thank B. Kim, C. Qiu, S. Domcke, J. Cao, and S. Srivatsan
for helpful discussions on data processing, analysis, and
visualization as well as all members of the Shendure and Furlong
laboratories for helpful input and discussions. Funding: D.C.
was supported by award no. T32HL007828 from the National
Heart, Lung, and Blood Institute along with support by award no.
F32HG011817 from the National Human Genome Research
Institute. J.K. was supported by award no. T32GM136566 from
the National Institute of General Medical Sciences. K.M.O.-G.
and E.L. and work in their laboratories were funded by NIH National
Institute of Neurological Disorders and Stroke award no. NS125864-01.
E.E.M.F. and work in the Furlong laboratory were supported by
grants from the Deutsche Forschungsgemeinschaft (DFG-SPP 2202
and CRC 1550) agreement FU 750, Baden-Württemberg Stiftung
(BWST-ISF2019-032), and European Research Council (ERC advanced
grant) agreement no. 787611 (DeCRyPT). J.S. and work in the
Shendure laboratory were supported by the Paul G. Allen Frontiers
Group (Allen Discovery Center for Cell Lineage Tracing). J.S. is an
investigator of the Howard Hughes Medical Institute. Author
contributions: S.S. and A.D. performed embryo collections and
carried out embryo fixation and nuclei isolation for sci-ATAC-seq. B.M.

and R.B.-G. performed the sci-RNA-seq experiments. R.M.D. and
R.B.-G. performed the sci-ATAC-seq experiments. D.C., X.H., S.S., and
R.B.-G. carried out the formal analysis. D.C., R.B.-G., and X.H. wrote
the first draft of themanuscript, which was then finalized with guidance
from E.E.M.F. and J.S. and input from all authors. S.S. performed
data analysis and results interpretation and participated in figure
generation and manuscript writing. C.S. performed in situ hybridization
experiments. J.K. aided with additional analyses and fine-scale
neuronal cell type annotation supervised by E.L. and K.M.O.-G. C.T.
contributed to conceptualizing the time modeling and comparisons to
pseudotime and revised the manuscript. E.E.M.F. and J.S. conceptualized,
supervised, and funded the project. Competing interests: J.S. is a SAB
member and a consultant and/or cofounder of Cajal Neuroscience,
Guardant Health, Maze Therapeutics, Camp4 Therapeutics, Phase
Genomics, Adaptive Biotechnologies, and Scale Biosciences. C.T. is a
SAB member and a consultant and/or cofounder of Algen
Biotechnologies, Altius Therapeutics, and Scale Biosciences. The authors
declare no other competing interests. Data and materials
availability: All other data are in the main paper or the supplementary
materials. All raw data are available through the GEO series
GSE190149. Additional scripts and intermediate files, including bigwigs
for all time windows and clusters, and a custom web app to

visualize UMAPs are available at https://shendure-web.gs.washington.
edu/content/members/DEAP_website/public/. We downloaded
the Kah ChIP-seq data from the ENCODE portal with identifier
ENCSR161YRO. License information: Copyright © 2022 the authors,
some rights reserved; exclusive licensee American Association for the
Advancement of Science. No claim to original US government works.
https://www.science.org/about/science-licenses-journal-article-reuse

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.abn5800
Materials and Methods
Supplementary Text
Figs. S1 to S11
Tables S1 to S13
References (50–90)
MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

Submitted 6 December 2021; accepted 28 June 2022
10.1126/science.abn5800

Calderon et al., Science 377, eabn5800 (2022) 5 August 2022 12 of 12

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of W
ashington on A

ugust 04, 2022

https://shendure-web.gs.washington.edu/content/members/DEAP_website/public/
https://shendure-web.gs.washington.edu/content/members/DEAP_website/public/
https://www.science.org/about/science-licenses-journal-article-reuse
https://science.org/doi/10.1126/science.abn5800
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/science.abn5800


Use of this article is subject to the Terms of service

Science (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW, Washington, DC
20005. The title Science is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

The continuum of Drosophila embryonic development at single-cell resolution
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Drosophila embryo analyzed cell by cell
Animal development can progress quite rapidly, with cellular lineages proliferating and differentiation status changing
minute to minute. Calderon et al. have now visualized development in the fruit fly Drosophila in greater detail than ever
before. Taking advantage of the ability to produce collections of Drosophila embryos that differ in developmental stage
by only seconds or minutes, the authors have analyzed, on a single-cell basis, how chromatin accessibility and gene
expression shift during Drosophila embryogenesis. This single-cell atlas of Drosophila embryogenesis reveals cell
lineages and their developmental relationships and links enhancer usage and gene expression. —BAP

View the article online
https://www.science.org/doi/10.1126/science.abn5800
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of W

ashington on A
ugust 04, 2022

https://www.science.org/about/terms-service

	377_620
	377_abn5800

